Developed Galantamine Therapy for Alzheimer's Disease by Introducing Nano-Drug Delivery Systems

Authors

  • Walaa Ahmed Mostapha Zoology Department, Women’s College for Arts, Science and Education – Ain Shams University, Egypt
  • Shewikar Tewfik El-Bakry Psychiatry Department, Faculty of Medicine, Benha University, Egypt

DOI:

https://doi.org/10.12970/2310-8231.2016.04.01.4

Keywords:

Alzheimer (Alz), Ceria-doped calcium hydroxyapatite (Ce/Ca-HAp), Carboxymethyl Chitosan/Ceria/hydroxyapatite composite (CMCS/Ce/Ca-HAp), Galantamine, Rat, Histology and Biochemistry.

Abstract

The major cause of dementia, a major public health problem, is Alzheimer’s disease (AD). A reliable method for the diagnosis and follow-up of Alzheimer’s disease is needed together with a specific biological marker. Galantamine, an acetylcholinesterase inhibitor for AD therapy has several reported side effects. One approach to reduce dosing amounts, frequency of administration, and adverse side effects while maintaining the drug efficiency, is the development of drug delivery systems using nanoparticles. Presently Galantamine (Gal) coated with either Cerium/ Calcium hydroxyapatite (Ce/Ca-HAp) or carboxymethyl chitosan/ Ceria/ Calcium hydroxapatite (CMCS/Ce/Ca-HAP) was i.p. injected at a dose of 2.5 mg/kg b.wt. for 2 and 4 weeks. 86 female adult albino Wistar rats (189- 200 gm weight) were used. Alzheimer was induced in ovariectomized rats by Aluminium chloride (AlCl3) oral treatment at doses of 17mg/kg b.wt. daily for 2 months. Rats were divided into six groups: Group (1) normal control; Group (2) Galantamine i.p. injected at a dose of 2.5 mg/kg b.wt; Group (3) Alzheimer ; Group (4) Alzheimer’s induced rats treated i.p. with Gal; Group (5) Alzheimer’s induced rats treated with Gal. coated with Ce/Ca-HAp; Group (6) Alzheimer’s induced rats treated with Gal. coated with Gal coated with CMCS/Ce/Ca-HAp for 2 and 4 weeks. In the concurrent study, AD induced histological alterations manifested as amyloid plaque formation of different sizes; congestion with perivascular edema; degenerated neurons with diffused gliosis; loss of pyramidal cells; separation of cortical tissue and formation of fibrous glial scar. Several tests may be cumulatively used for early detection as decreased Ach; Bcl2; Tpl; GSH; SOD; CAT; Cyto P450 and increased Ab; Chol; B-FABP; NO; MDA; GSSH. Treatment with Gal coated by Ce/Ca-HAp imposed highly significant improvement to near to normal levels in both histological and biochemical parameters. Gal coated by CMCS/Ce/Ca-HAp failed to encounter obvious ameliorations. In conclusion, brain markers ( Ach; Bcl-2; Aβ; TPL; Chol; B-FABP; NO; MDA) together with brain antioxidants (GSH; SOD; CAT; CytoP450) may impose progressive laboratory testing method besides well known imaging techniques. Galantamine therapy may impose limited improvements thus drug delivery systems Gal coated by Ce/Ca-HAp may aid to minimize dosing amounts, frequency of administration, and adverse side effects of drug while increasing its therapeutic efficacy.

References

Skoumalova A, Hort J. Blood markers of oxidative stress in Alzheimer’s disease. J Cell Mol Med 2012; 16(10): 2291-2300. http://dx.doi.org/10.1111/j.1582-4934.2012.01585.x

Van Duijn CM, Clayton D, Chandra V, Fratiglioni L, Graves AB, Heyman A, Jorm AF, Kokmen E, Kondo K, Mortimer JA, et al. Familial aggregation of Alzheimer’s disease and related disorders: a collaborative re-analysis of case-control studies. EURODEM Risk Factors Research Group. Int J Epidemiol 1991a; 20(2): 13-20. http://dx.doi.org/10.1093/ije/20.Supplement_2.S13

Van Duijn CM, Stijnen T, Hofman A. Risk factors for Alzheimer’s disease: overview of the EURODEM collaborative re-analysis of case-control studies. EURODEM Risk Factors Research Group. Int J Epidemiol 1991b; 20(2): 4-12. http://dx.doi.org/10.1093/ije/20.Supplement_2.S4

Kivipelto M, Helkala E-L, Laakso MP, Hänninen T, Hallikainen M, Alhainen K, Soininen H, Tuomilehto J, Nissinen A. Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. BMJ 2001; 322: 1447-1451. http://dx.doi.org/10.1136/bmj.322.7300.1447

Doraiswamy PM, Krishen A, Stallone F, Martin WL, Potts NL, Metz A, DeVeaugh-Geiss J. Cognitive performance on the Alzheimer’s Disease Assessment Scale: effect of education. Neurology 1995; 45: 1980-1984. http://dx.doi.org/10.1212/WNL.45.11.1980

Galasko D, Abramson I, Corey-Bloom J, Thal LJ. Repeated exposure to the Mini-Mental State Examination and the Information-Memory-Concentration Test results in a practice effect in Alzheimer’s disease. Neurology 1993; 43: 1559-1563. http://dx.doi.org/10.1212/WNL.43.8.1559

Manly JJ, Jacobs DM, Sano M, Bell K, Merchant CA, Small SA, Stern Y. Cognitive test performance among non dementia elderly African Americans and whites. Neurology 1998; 50: 1238-1245. http://dx.doi.org/10.1212/WNL.50.5.1238

Koivisto K. Population-based dementia screening program in the City of Kuopio, eastern Finland: evaluation of screening methods, prevalence of dementia and dementia subtypes. University of Kuopio, Department of Neurology Series of reports No 33. 1995.

DeCarli C, Haxby JV, Gillette JA, Teichberg D, Rapoport SI, Schapiro MB. Longitudinal changes in lateral ventricular volume in patients with dementia of the Alzheimer type. Neurology 1992; 42: 2029-2036. http://dx.doi.org/10.1212/WNL.42.10.2029

Talbot PR, Lloyd JJ, Snowden JS, Neary D, Testa HJ. A clinical role for 99mTc-HMPAO SPECT in the investigation of dementia? J Neurol Neurosurg Psychiatry 1998; 64: 306-313. http://dx.doi.org/10.1136/jnnp.64.3.306

Borroni B, DiLuca M, Cattabeni F, Padovani A. Advance on the diagnostic potential of biological markers in the early detection of Alzheimer Disease. Neuroscience 2004; 35(3): 232-245. http://dx.doi.org/10.1002/nrc.20036

Teunissen CE, de Vente J, Steinbusch HW, De Bruijn C. Biochemical markers related to Alzheimer’s dementia in serum and cerebrospinal fluid. Neurobiol Aging 2002; 23: 485-508. http://dx.doi.org/10.1016/S0197-4580(01)00328-1

Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J. Neurol. Neurosurg. Psychiatry 1999; 66(2): 137-147. http://dx.doi.org/10.1136/jnnp.66.2.137

Ramirez MJ. Differential involvement of 5-HT(1B/1D) and 5-HT6 receptors in cognitive and non-cognitive symptoms in Alzheimer’s disease, Neuropsychopharmacology 2004; 29(2): 410-416. http://dx.doi.org/10.1038/sj.npp.1300330

Gil-Bea FJ, García-Alloza M, Marcos JB, Ramírez MJ. Evaluation of cholinergic markers in Alzheimer's disease and in a model of cholinergic deficit. Neuroscince Letts 2005; 375(1): 37-41. http://dx.doi.org/10.1016/j.neulet.2004.10.062

Tariot PN. Maintaining cognitive function in Alzheimer disease: how effective are current treatments. Alzheimer Dis Assoc Disord 2001; 15S: 26-33. http://dx.doi.org/10.1097/00002093-200108001-00005

Anglade P, Vyas S, Javoy-Agid F, et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 1997; 12: 25-31.

Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002; 297(5580): 353-356. http://dx.doi.org/10.1126/science.1072994

Steinerman JR, Irizarry M, Scarmeas N, et al. Distinct Pools of -Amyloid in Alzheimer Disease–Affected Brain Arch Neurol 2008; 65(7): 906-912. http://dx.doi.org/10.1001/archneur.65.7.906

Carson SD. Tissue factor-initiated blood coagulation. Prog Clin Pathol 1984; 9: 1-14.

McComb RD, Miller KA, Carson SD. Tissue Factor Antigen in Senile Plaques of Alzheimer's Disease. Am J Pathol 1991; 139(3): 491-494.

Reed B, Villeneuve S, Mack W, DeCarli C, Chui H, Jagust W. Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurol 2014; 71(2): 195-200. http://dx.doi.org/10.1001/jamaneurol.2013.5390

Hughes T. Cholesterol Metabolism in the Brain and Dementia. Doctoral Dissertation, University of Pittsburgh Pennsylvania, USA 2011.

Myers-Pane SC, Hubbel T, Pu L, Schnu¨tgen F, Bo¨rchers T, Wood WG. Isolation and characterization of two fatty acid-binding proteins from mouse brain. J Neurochem 1996; 66: 1648-1656. http://dx.doi.org/10.1046/j.1471-4159.1996.66041648.x

Glatz JFC, Van der Vusse GJ. Cellular fatty acid-binding proteins: their function and physiological signification. Prog Lipid Res 1996; 3: 243-82. http://dx.doi.org/10.1016/S0163-7827(96)00006-9

Glatz JFC, VanderVoort D, Hermens WT. Fatty acid binding protein as the earliest available plasma marker of acute myocardial injury. J Clin Ligand Assay 2002; 25: 167-77.

Pu L, Igbavboa U, Wood WG, Roths JB, Kier AB, Spener F. Expression of fatty acid binding protein is altered in aged mouse brain. Mol Cell Biochem 1999; 198: 69-78. http://dx.doi.org/10.1023/A:1006946027619

Shukla R. Nitric oxide in neurodegeneration. Ann Neurosc 2007; 14(1): 13-20. http://dx.doi.org/10.5214/ans.0972.7531.2007.140104

Aliev G, Palacios HH, Lipsitt AE, et al. Nitric oxide as an initiator of brain lesions during the development of Alzheimer disease. Neurotoxicity Research 2009; 16(3): 293-305. http://dx.doi.org/10.1007/s12640-009-9066-5

Aliev G, Li Y, Palacios HH, Obrenovich ME. Oxidative stress induced mitochondrial DNA deletion as a hallmark for the drug development in the context of the cerebrovascular diseases. Recent Pat Cardiovasc Drug Discov 2011; 6(3): 222-224. http://dx.doi.org/10.2174/157489011797376942

Moncada S, Erusalimsky JD. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol 2002; 3(3): 214-220. http://dx.doi.org/10.1038/nrm762

Greilberger J, Koidl C, Greilberger M, et al. Malondialdehyde, carbonyl proteins and albumin-disulphide as useful oxidative markers in mild cognitive impairment and Alzheimer’s disease. Free Radic Res 2008; 42: 633-638. http://dx.doi.org/10.1080/10715760802255764

Sinem F, Dildar K, Go¨khan E, et al. The serum protein and lipid oxidation marker levels in Alzheimer’s disease and effects of cholinesterase inhibitors and antipsychotic drugs therapy. Curr Alzheimer Res 2010; 7: 463-469. http://dx.doi.org/10.2174/156720510791383822

Benzi G, Moretti A. Age- and peroxidative stress-related modifications of the cerebral enzymatic activities linked to mitochondria and the glutathione system. Free Radic Biol Med 1995; 19(1): 77-101. http://dx.doi.org/10.1016/0891-5849(94)00244-E

Padurariu M, Ciobica A, Hritcu L, Stoica B, Bild W, Stefanescu C. Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neuroscience Lett 2010; 469(1): 6-10. http://dx.doi.org/10.1016/j.neulet.2009.11.033

Kihara T, Sawada H, Nakamizo T, Kanki R, Yamashita H, Maelicka A, Shimohama S. Galanamine modulates nicotinic receptor and blocks Abeta-enhanced glutamate toxicity. Biochem Biophys Res Commun 2004; 325: 976-982. http://dx.doi.org/10.1016/j.bbrc.2004.10.132

Hwang J, Rodgers K, Oliver JC, Schluep T. α- methylprednisolone conjugated cyclodextrin polymer based nanoparticles for rheumatoid arthritis therapy. Int J Nanomedicine 2008; 3(3): 359-372.

Riman RE, Suchanek WL, Byrappa K, Chen CW, Shuk P, Oakes CS. Solution synthesis of hydroxyapatite designer particulates. Solid State Ionics 2001; 151: 393-402. http://dx.doi.org/10.1016/S0167-2738(02)00545-3

Estevez AY, Erlichman JS. Cerium Oxide Nanoparticles for the Treatment of Neurological Oxidative Stress Diseases. Am Chem Soc 2011; 1083: 255-288. http://dx.doi.org/10.1021/bk-2011-1083.ch009

Luo Y, Teng Z, Wang X, Wang Q. Development of carboxymethyl chitosan hydrogel beads in alcohol-aqueous binary solvent for nutrient delivery applications. Food Hydrocolloids 2012; 31: 332-339. http://dx.doi.org/10.1016/j.foodhyd.2012.11.011

Takuma K, Matsuo A, Himeno Y, et al. 17 beta-estradiol attenuates hippocampal neuronal loss and cognitive dysfunction induced by chronic restraint stress in ovariectomized rats. Neuroscience 2007; 146: 60-68. http://dx.doi.org/10.1016/j.neuroscience.2007.01.017

Krasovskii GN, Vasukovich LY, Chariev OG. Experimental study of biological effects of lead and aluminium following oral administration. Environ Health Perspect 1979; 30: 47-51.

Iliev AI, Traykov VB, Mantchev GT, et al. A post-ischemic single administration of galantamine, a cholinesterase inhibitor, improves learning ability in rats. J Pharm Pharmacol 2000; 52: 1151-1156. http://dx.doi.org/10.1211/0022357001774921

Ellman GL, Courtney KD. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961; 7: 88-90. http://dx.doi.org/10.1016/0006-2952(61)90145-9

Barbareschi M, Veronese S, Leek R, Fox S, Bonzanini M, Girlando S, et al. Bcl-2 and P53expression in node-negative breast carcinoma—study with long-term follow-up. Hum Pathol 1996; 27(11): 1149-1155. http://dx.doi.org/10.1016/S0046-8177(96)90307-X

David EK, Claus UP, Edward HK. Modualtion of amyloid B-protein clearance and Alzheimer’s disease induced in rats. J Clin Invest 2000; 106: 1159-1166. http://dx.doi.org/10.1172/JCI11013

Bolhuis PA, Sylva-Steenland RMR, Tutuarima JA, Hische EAH. Comparison of the spectrophotometric determination and the two-stage coagulation assay of tissue factor activity. Thrombosis Research 1982; 27: 429-434. http://dx.doi.org/10.1016/0049-3848(82)90060-3

Sidel J, Haegele E, Wahlefeld A. Reagent for the exnyzmatic determination of serum total cholesterol with improved lipolytic efficiency. Clin Chem 1983; 29: 1075-1078.

Liu RZ, Mita R, Beaulieu M, Gao Z, Godbout R. Fatty acid binding proteins in brain development and disease. Int J Dev Biol 2010; 54(8-9): 1229-1239. http://dx.doi.org/10.1387/ijdb.092976rl

Nathan SB, Matthew BG. Methods to detect nitric oxide and its metabolites in biological samples. Free Rad Biol & Med 2007; 43: 645-657. http://dx.doi.org/10.1016/j.freeradbiomed.2007.04.026

Moore K, Roberts LJ. Measurement of lipid peroxidation. Free Radic Res 1998; 28: 659-671. http://dx.doi.org/10.3109/10715769809065821

Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Anal Biochem 1969; 27: 502-522. http://dx.doi.org/10.1016/0003-2697(69)90064-5

Kuthan H, Haussmann HJ, Werringloer J. A spectrophotometric assay for superoxide dismutase activities in crude tissue fractions. Biochem J 1986; 237: 175-180. http://dx.doi.org/10.1042/bj2370175

Góth L. A simple method for determination of serumcatalase activity and revision of reference range. Clin Chim Acta 1991; 196: 143-151. http://dx.doi.org/10.1016/0009-8981(91)90067-M

Schenkman JB. Cytochrome P450, “Handbook of Experimental Pharmacology”,(Ed By Sinclair JF, Sinclair PR), 1993; 105: 259-277.

Harris HF. After Bruce Casselman WG. Histopathological Technique. Methuen and Co. Ltd 1959; (1900).

Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med 2010; 362: 329-344. http://dx.doi.org/10.1056/NEJMra0909142

Pratico` D, Trojanowski JQ. Inflammatory hypotheses: novel mechanisms of Alzheimer’s neurodegeneration and new therapeutic targets? Neurobiol Aging 2000; 21: 441-445.

Mahdy K, Shaker O, Wafay H, Nassar Y, Hassan H, Hussein A. Effect of some medicinal plant extracts on the oxidative stress status in Alzheimer’s disease induced in rats. Eur Rev Med Pharmacol Sci 2012; 16(3): 31-42.

Yassin NA, El-Shenawy SM, Mahdy KA, Gouda NA, Marrie AFH, Farrag AH, Ibrahim BM. Effect of Boswellia serrata on Alzheimer’s disease induced in rats. JASMR 2013; 8(1): 1-1170.

Vallés SL, Borrás C, Gambini J, Furriol J, Ortega A, Sastre J, Pallardo FV, Vina J. Oestradiol or genistein rescues neurons from amyloid beta-induced cell death by inhibiting activation of p38. Aging Cell 2008; 7(1): 112-118. http://dx.doi.org/10.1111/j.1474-9726.2007.00356.x

Wu Z, Du Y, Xue Hm, Wu Y, Zhou B. Aluminum induces neurodegeneration and its toxicity arises from increased iron accumulation and reactive oxygen species (ROS) production. Neurobiol Aging 2012; 33(1): 199-211. http://dx.doi.org/10.1016/j.neurobiolaging.2010.06.018

Terry AV, Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer’s disease related cognitive deficits: Recent challenges and their implications for novel drug development. JPET 2003; 306(3): 821-827. http://dx.doi.org/10.1124/jpet.102.041616

MacGibbon GA, Lawlor PA, Walton M. Expression of fos, jun, and krox family proteins in Alzheimer's disease. Exp Neurol 1997; 147(2): 316-332. http://dx.doi.org/10.1006/exnr.1997.6600

Hockenberry DM, Oltvai ZN, Yin X-M, Milliman CL, Korsmeyer SJ. Bel-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993; 75: 241-251. http://dx.doi.org/10.1016/0092-8674(93)80066-N

Prehn JHM, Bindokas VP, Marcuecilli CJ, Krajewski S, Reed JC, Miller RJ. Regulation of neuronal Bel-2 protein expression and calcium homeostasis by transforming growth factor type ~1confers wide-ranging protection on rat hippocampal neurons. Proc Natl Acad Sci USA 1994; 91(3): 1259-1261.

Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 2001; 81(2): 741-766.

Sadigh-Eteghad S, Sabermarouf B, Majdi A,Talebi M, Farhoudi M, Javad Mahmoudi J. Amyloid-Beta: A Crucial Factor in Alzheimer’s Disease. Med Princ Pract 2015; 24: 1-10. http://dx.doi.org/10.1159/000369101

Casserly I, Topol E. Convergence of atherosclerosis and Alzheimer’s disease: inflammation, cholesterol, and misfolded proteins. Lancet 2004; 363: 1139-1146. http://dx.doi.org/10.1016/S0140-6736(04)15900-X

Eckert GP, Müller WE, Wood WG. Cholesterol-lowering Drugs and Alzheimer's Disease. Future Lipidology 2007; 2(4): 423-432. http://dx.doi.org/10.2217/17460875.2.4.423

Simons M, Keller P, Dichgans J, Schulz JB. Cholesterol and Alzheimer’s disease: is there a link? Neurology 2001; 57: 1089-1093. http://dx.doi.org/10.1212/WNL.57.6.1089

Teunissen CE, Veerhuis R, De Vente J, Verhey RJF, Vreeling F, van Boxtel MPJ, Glatz JFC, Pelsers AL. Brain-specific fatty acid-binding protein is elevated in serum of patients with dementia-related diseases. Eur J Neurol 2011; 18(6): 865-871. http://dx.doi.org/10.1111/j.1468-1331.2010.03273.x

Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA. S-Nitrosylation of Drp1 mediates β-Amyloid related mitochondrial fission and neuronal injury. Science 2009; 324: 102-105. http://dx.doi.org/10.1126/science.1171091

Naditz A. Toxic Breakups: The Deadly Relationship Between Alzheimer’s Disease and Nitric Oxide Gas. Eukaryon 2011; 7: 58-59.

Persson T, Popescu BO, Cedazo-Minguez A. Oxidative Stress in Alzheimer’s Disease: Why Did Antioxidant Therapy Fail? Oxid Med Cell Longev 2014; 2014(2): 1-11. http://dx.doi.org/10.1155/2014/427318

Khan RA, Khan MR, Sahreen S. Brain antioxidant markers, cognitive performance and acetylcholinesterase activity of rats: efficiency of Sonchus asper. Behav Brain Funct 2012; 8: 21-27. http://dx.doi.org/10.1186/1744-9081-8-21

Downloads

Published

2016-03-06

Issue

Section

Articles