Brucellosis: The Second Most Important, Yet Neglected, Zoonotic Disease
DOI:
https://doi.org/10.12970/2310-0796.2021.09.07Keywords:
Brucellosis, Brucella, Zoonotic disease, Diagnosis, Vaccines, Therapy, PhageAbstract
Brucellosis is the second most important zoonotic disease after Rabies. Yet it is one of the neglected tropical diseases. It is prevalent worldwide and endemic in many countries. It affects several domestic animal species like cattle, dog, pig, sheep, goat, camel etc and can spread to humans through contact or consumption of contaminated milk and milk products, meat etc. The currently available vaccines and antibiotics have not succeeded in eradication of the disease. The infected animals can become carrier of the disease for the rest of their lives. Here we review certain important clinical, microbiological and pathological aspects of the disease and control measures against Brucellosis.
References
Poester FP, Samartino LE, Santos RL. Pathogenesis and pathobiology of Brucellosis in livestock. Rev. Sci. Tech. OIE 2013; 32(1): 105-115. https://doi.org/10.20506/rst.32.1.2193
Godfroid J, Garin-Bastuji B, Saegerman C, Blasco JM. Brucellosis in Terrestrial Wildlife. Rev. Sci. Tech. (OIE) 2013; 32(1): 27-42. https://doi.org/10.20506/rst.32.1.2180
Cutler SJ, Whatmore AM, Commander NJ. Brucellosis - New aspects of an old Disease. J. Appl. Microbiol. 2005; 98: 1270-1281. https://doi.org/10.1111/j.1365-2672.2005.02622.x
Pandeya YR, Joshi DD, Dhakal S, Ghimire L, Mahato BR, Chaulagain S, Satyal RC, Sah SK. Seroprevalance of Brucellosis in different animal species of Kailali district Nepal. International Journal of Infection and Microbiology 2013; 2(1): 22-25. https://doi.org/10.3126/ijim.v2i1.8005
Enright FM, Walker JV, Jeffers G, Deyoe BL. Cellular and humoral responses of Brucella abortus- infected bovine fetuses. Am. J. Vet. Res. 1984; 45: 424-443.
OIE. Bovine Brucellosis, Section 2,4,3. Manual of the Diagnostic Tests and Vaccines for Terrestrial animals, vol 1, 5th Edn. Office International Des Epizooties, Paris, France. 2009; pp. 624-659.
Petersen E, Rajashekara G, Sanakkayala N, Eskra L, Harms J, Splitter G. Erythritol triggers expression of virulence traits in Brucella melitensis. Microb. Infect. 2013; 15(6-7): 440-449. https://doi.org/10.1016/j.micinf.2013.02.002
Verger JM, Grimont F, Grimont PA, Grayon M. Taxonomy of the genus Brucella. Ann. Inst. Past. Microbiol. 1987; 138: 235-238. https://doi.org/10.1016/0769-2609(87)90199-2
Rafiei A, Ardestani SK, Kariminia A, Keyhani A, Mohraz M, Amirkhani A. 2006; Dominant Th1 cytokine production in early onset of human Brucellosis followed by switching towards Th2 along prolongation of disease. J. Infect. 53(5): 315-324. https://doi.org/10.1016/j.jinf.2005.11.024
OIE. Bovine Brucellosis, section 2.3 Manual of standards for diagnostic test and vaccines. 2004; 5th Edn.
Refai M. Incidence and control of bovine Brucellosis in the Near East region. Vet. Microbiol. 2002; 90: 81-110. https://doi.org/10.1016/S0378-1135(02)00248-1
Kollannur JD, Rathore R, Chauhan RS Epidemiology and Economics of Brucellosis in Animals and its Zoonotic Significance. Proceedings of XIII International Congress in Animal Hygiene. International Society for Animal Hygiene, 2007; pp. 466-468.
Jain U, Bist B, Sahzad, Pragati, Dwivedi K. Outbreak of Brucellosis in Buffaloes Aborted in a Village Mahuan, District Mainpuri, UP, India-A case report. Vet. World 2013; 5: 51-52. https://doi.org/10.5455/vetworld.2013.51-52
Renukaradhya GJ, Isloor S, Rajasekhar M. 2002; Epidemi-ology, zoonotic aspects, vaccination and control/eradication of Brucellosis in India. Vet. Microbiol. 90: 183-195. https://doi.org/10.1016/S0378-1135(02)00253-5
Aulakh HK, Patil PK, Sharma S, Kumar H, Mahajan V, Sandhu KS. A study on the epidemiology of bovine Brucellosis in Punjab (India) using Milk-ELISA. Acta Vet. Brun. 2008; 77: 393-399. https://doi.org/10.2754/avb200877030393
Acha PN, Szyfres B. Zoonoses and communicable diseases common to man and animals. Vol. I. Bacterioses and mycoses. Scientific and Technical Publication No. 580. Pan American Health Organization, Regional Office of the WHO, Washington, USA. 2003; p 384.
WHO. Brucellosis in humans and animals. 2006; WHO/CDS/EPR 2006.7
Wyatt HV. How Themistocles Zammit found Malta Fever (Brucellosis) to be transmitted by the milk of goats. J. Royal Soc. Med. 2005; 98(10): 451-454. https://doi.org/10.1177/014107680509801009
Quinn PJ, Carter ME, Markey B, Carter GR. Clinical Veterinary Microbiology. Mosby International Limited, Edinburgh 1999; pp 261-267.
Hassanain NA, Ahmed WM. Efficacy of serological tests in comparison with PCR for diagnosis of Brucellosis. World J. Med. Sci. 2012; 7(4): 243-247.
Pomales L, Stinebring WR. Intracellular multiplication of Brucella abortus in normal and immune mononuclear phagocytes. Proc. Soc. Exp. Biol. Med. 1957; 94(1): 78-83. https://doi.org/10.3181/00379727-94-22860
Laurie DS, Thomas AF. Pathogenesis of Brucella. Crit. Rev. Microbiol. 1990; 17(3): 209-230. https://doi.org/10.3109/10408419009105726
Silvamol JP, Franca SA, Paixao TA, Santos RL. Laboratorial diagnosis of animal Brucellosis. Revista Brasileira de Ciencia Veterinaria 2012; 19(3): 117-126. https://doi.org/10.4322/rbcv.2014.106
Pedrix J, Chirol C. Les vaches excentrices de Brucella dans le lait. Bull. Soc. Sci. Vet. Med. Comp. Lyon 1975; 77(3): 371-378.
Dafni I, Hoyda B, Feinhaken D. Observations on Brucella melitensis infection in Israeli cattle herds. Israel J. Vet. Med. 1991; 46(1):13-19. https://doi.org/10.1111/1469-0691.12554
Dean AS, Schelling E, Bonfoh B, Kulo AE, Boukaya GA, Pilo P. Deletion in the gene BruAB2_0168 of Brucella abortus strains: diagnostic challenges. Clin. Microbiol. Infect. 2014; 20(9): 550-553.
Cernyseva MI, Knjazeva EN, Egorova LS. Study of the plate agglutination test with rose Bengal antigen for the diagnosis of human Brucellosis. Bull WHO 1997; 55(6): 669-674.
Saxena HM, Kaur P. A new superagglutination test to minimize false negative and false positive results common with plate/ slide agglutination tests for the diagnosis of infectious diseases. Int. J. Trop. Dis. Hlth. 2013; 3(3): 199-209. https://doi.org/10.9734/IJTDH/2013/3405
Damp SC, Crumrine MH, Lewis GE. Microtiter plate agglutination test for Brucella canis antibodies. Appl. Microbiol. 1973; 25(3): 489-490. https://doi.org/10.1128/AEM.25.3.489-490.1973
Kimura M, Imaoka K, Suzuki M, Kamiyama T, Yamada A. Evaluation of a Microplate Agglutination Test (MAT) for serological diagnosis of canine Brucellosis. J. Vet. Med. Sci. 2008; 70(7): 707-709. https://doi.org/10.1292/jvms.70.707
Versilova PA, Cernyseva MI, Aslanjan RG, Knjazeva EN. Diagnosis of human and animal Brucellosis by the indirect haemagglutination test. Bull. WHO 1974; 51: 191-197.
Saz JV, Beltrán M, Díaz A, Agulla A, Merino FJ, Villasante PA, Velasco AC. 1987; Enzyme-linked immunosorbent assay for diagnosis of Brucellosis. Clin. Microbiol. 6(1): 71-74. https://doi.org/10.1007/BF02097200
Chachra D, Saxena HM, Kaur G, Chandra M. Comparative efficacy of Rose Bengal Plate test, Standard Tube Aggulutination Test and Dot-ELISA in immunological detection of antibodies to Brucella abortus in sera. J Bacteriol. Res. 2009; 1(3): 30-33.
Ganesan PI, Anuradha P. Rose Bengal Test and dot- ELISA in diagnosis of bovine Brucellosis. Ind. Vet. J. 2006; 83: 907.
Chand P, Sharma AK. Situation of Brucellosis in bovines at organized cattle farms belonging to three different states. J. Immunol. Immunopathol. 2004; 6: 11-15.
Erdedenebaatar J, Bayarsaikhan B, Yondondorj A, Wataraj M, Shirrahata T, Jargalsikhan E, Kawamoto K, Makino S. Epidemiological and serological survey of Brucellosis in Mongolia by ELISA using sarcosine extracts. Microbiol. Immunol. 2004; 48: 571-577. https://doi.org/10.1111/j.1348-0421.2004.tb03553.x
Malik R, Gupta MP, Sidhu PK, Filia G, Saxena HM, Shafi TA. Comparative evaluation of indirect enzyme linked Immunosorbent assay, Rose Bengal Plate Test, microagglutination test and polymerase chain reaction for diagnosis of Brucellosis in buffaloes. Turkish J. Vet. Ani. Sci. 2013; 37: 306-310.
Dorsch M, Morena E, Stackbrandt E. Nucleotide sequence of the 16S rRNA from Brucella abortus. Nucl. Acid Res. 1989; 17: 1765. https://doi.org/10.1093/nar/17.4.1765
Saiki, RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R., Horn GT, Mullis KB, Ehrlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988; 239: 487-491. https://doi.org/10.1126/science.239.4839.487
Bricker BJ, Halling SM. Differentiation of Brucella abortus bv. 1, 2, and 4, Brucella melitensis, Brucella ovis, and Brucella suis bv. 1 by PCR. J. Clin. Microbiol. 1994; 32(11): 2660-2666. https://doi.org/10.1128/jcm.32.11.2660-2666.1994
Romero C, Padro M, Grillo MJ, Diaz R, Blasco JM, Lopez Goni L. Evaluation of PCR and indirect Enzyme Linked Immunosorbent assay on milk samples of Brucellosis of dairy cattle. J. Clin. Microbiol. 1995; 33: 3198-3200. https://doi.org/10.1128/jcm.33.12.3198-3200.1995
Huber B, Scholz HC, Lucero N, Busse HJ. Development of a PCR assay for typing and subtyping of Brucella species. Int. J. Med. Microbiol. 2009; 299: 563-573. https://doi.org/10.1016/j.ijmm.2009.05.002
O’Leary S, Shean M, Sweeney T. Brucella abortus detection by PCR assay in blood, milk and lymph tissue of serologically positive cows. Res. Vet. Sci. 2006; 81(2): 170-176. https://doi.org/10.1016/j.rvsc.2005.12.001
Kim JY, Kang SI, Lee JJ, Lee K, Sung SR, Erdenebaataar J, Vanaabaatar B, Jung SC, Park YH, Yoo HS. Differential diagnosis of Brucella abortus by real-time PCR based on single-nucleotide polymorphisms. J. Vet. Med. Sci. 2016; 78(4): 557-562. https://doi.org/10.1292/jvms.15-0541
Baily GG, Krahn JB, Drasar BS, Stoker NG. Detection of Brucella melitensis and Brucella abortus by DNA amplification. J. Trop. Med. Hyg. 1992; 95(4): 271-275.
Singh M, Singh DK, Shivaramu KV, Biswas R, Rawat S, Boral R, Singh S, Cheema PS. 2010; Serum as clinical specimen in PCR for diagnosis of ovine Brucellosis. Ind. J. Ani. Sci. 80: 17-18.
Navarro E, Escribano J, Fernandez JA, Solera J. Comparison of three different PCR methods for detection of Brucella species in human blood samples. Immunol. Med. Microbiol. 2002; 34: 147-151. https://doi.org/10.1111/j.1574-695X.2002.tb00616.x
Mukherjee F, Jain J, Patel V, Nair M. Multiple genus-specific markers in PCR assays to improve the specificity and sensitivity of diagnosis of Brucellosis in field animals. J. Med. Microbiol. 2007; 56: 1309-1316. https://doi.org/10.1099/jmm.0.47160-0
Al-Mariri A, Haj–Mahmoud N. Detection of Brucella abortus in bovine milk by polymerase chain reaction. Acta Vet. Brun. 2010; 79: 277-289. https://doi.org/10.2754/avb201079020277
Ghodasara S, Roy A, Rank DN, Bhander BB. Identification of Brucella species from animals with reproductive disorders by polymerase chain reaction assay. Buff. Bull. 2010; 29(2): 98-108.
Baddour MM, Alkhalifa DH. Evaluation of three polymerase chain reaction techniques for detection of Brucella DNA in peripheral human blood. Can. J. Microbiol. 2008; 54(5): 352-357. https://doi.org/10.1139/W08-017
Wang Y, Wang Z, Zhang W, Bal L, Zhao Y, Liu C, Ma A, Yu H. Polymerase chain reaction based assays for the diagnosis of human Brucellosis. Ann. Clin. Microbiol. Antimicrob. 2014; 13(31): 31-37. https://doi.org/10.1186/s12941-014-0031-7
Keer JT, Birch L. Molecular methods for the assessment of bacterial viability. J. Microbiol. Meth. 2003; 53: 175-183. https://doi.org/10.1016/S0167-7012(03)00025-3
Jamil S, Keer JT, Lucas SB, Dockrell HM, Chiand TJ, Hussain R, Stroker NG. Use of polymerase chain reaction to assess efficacy of leprosy chemotherapy. Lancet 1993; 342: 264-268. https://doi.org/10.1016/0140-6736(93)91816-5
Masters CI, Shallcross JA, Mackey B.M. Effect of stress treatment on the detection of Listeria monocytogenes and Enterotoxigenic E. coli by polymerase chain reaction. J. Appl. Bacteriol. 1994; 77: 73-79. https://doi.org/10.1111/j.1365-2672.1994.tb03047.x
Deere D, Porter J, Pickup RW, Edwards C. Survival of cells and DNA Aeromonas salmonicida released into aquatic microcosms. J. Appl. Bacteriol. 1996; 81:309-318. https://doi.org/10.1111/j.1365-2672.1996.tb04333.x
Hellyer TJ, DesJardin LE, Hehman GL, Cave MD, Eisenach KD. Quantitative analysis of mRNA as a marker for viability of Mycobacterium tuberculosis. J. Clin. Microbiol. 1999; 37: 290-295. https://doi.org/10.1128/JCM.37.2.290-295.1999
Simpkins SA, Chan AB, Hays J, Popping B, Cook N. An RNA transcription based amplification techniques (NASBA) for the detection of viable Salmonella enterica. Lett. Appl. Microbiol. 2000; 30: 75-79. https://doi.org/10.1046/j.1472-765x.2000.00670.x
Al-Ajlan HH, Ibrahim ASS, Al-Salamah AA. Comparison of different PCR methods for detection of Brucella species in human blood samples. Pol. J. Microbiol. 2011; 60(1): 27-33. https://doi.org/10.33073/pjm-2011-004
Saxena HM, Raj S. A novel immunotherapy of Brucellosis in cows monitored non-invasively through a specific biomarker. PLOS Negl. Trop. Dis. 2018; 12(4): e0006393. https://doi.org/10.1371/journal.pntd.0006393
Fensterbank R. Brucellosis in cattle, sheep and goats: diagnosis, control and vaccination. Rev. Sci. Tech. (OIE) 1986; 5(3): 605-618. https://doi.org/10.20506/rst.5.3.269
Fillippov AA, Sergueev KV, Nikolich MP. Bacteriophages against biothreat bacteria: Diagnostic, environmental and therapeutic applications. J. Bioter. Biodef. 2013; S3: 010. https://doi.org/10.4172/2157-2526.S3-010
Rahman H. National control program on Brucellosis: Aims and strategies. Tech. Bull. PD-ADMAS 2012; (15).
Guerra MA, Nicoletti P. Comparison of the susceptibility of Brucella abortus isolates obtained before and after cows were treated with oxytetracycline and streptomycin. Am. J. Vet. Res. 1986; 47: 2612-2613.
Schurig GG, Roop RM 2nd, Bagchi T, Boyle S, Buhrman D, Sriranganathan N. 1991; Biological properties of RB51; a stable rough strain of Brucella abortus. Vet. Microbiol. 28: 171-188. https://doi.org/10.1016/0378-1135(91)90091-S
Schurig GG, Sriranganathan N, Corbel MJ. 2002; Brucellosis vaccines: past, present and future. Vet. Microbiol. 90: 479-496. https://doi.org/10.1016/S0378-1135(02)00255-9
Palmer MV. Infection of pregnant cattle with the vaccine can-didate Brucella abortus strain RB51: pathologic, bacteriologic and serologic findings. Vet. Path. 1996; 33: 682-691. https://doi.org/10.1177/030098589603300607
Kurar E, Splitter GA. Nucleic acid vaccination for Brucella abortus ribosomal L7/L12 gene elicits immune response. Vaccine 1997; 15: 1852-1857. https://doi.org/10.1016/S0264-410X(97)00140-0
Leclercq S, Harms JS. Rosinha GM, Azevada V, Olivereira SC. Induction of a Th1 type of immune response but not protective immunity by intramuscular DNA immunization with Brucella abortus GroEL heat shock gene. J. Med. Microbiol. 2002; 51(1): 20-26. https://doi.org/10.1099/0022-1317-51-1-20
Gupta VK, Rout PK, Vihan VS. Induction of immune response in mice with a DNA vccine encoding outer memberane protein (omp 31) of Brucella melitensis 16M. Res. Vet. Sci. 2007; 82: 305-313. https://doi.org/10.1016/j.rvsc.2006.07.014
Toth TE, Cobb JA , Boyle SM and Roop RM. 1995; Selective humoral response of BALB / mice to Brucella abortus protein expressed by vaccinia virus recombination. Vet. Microbiol. 45: 171-183. https://doi.org/10.1016/0378-1135(95)00047-E
Stabel TJ, Mayfield JE, Tabatabai LE, Wannemuehler MJ. Oral immunization of mice attenuated Salmonella typhimurium containing a recombinant plasmid with codes for production of a 31-kilodalton protein of Brucella abortus. Infect. Immun. 1990; 58: 2048-2055. https://doi.org/10.1128/iai.58.7.2048-2055.1990
Corbel MJ. The immunological properties of Brucella ribosomal preparations. Dev. Biol. Stand. J. 1976; 31: 115-122.
Luciana A, Azevedo V, Loir Y. Production and Targetting of the Brucella abortus antigen L7/L12 in Lactococcus lactis: A first step towards food-grade live vaccines against Brucellosis. Appl. Environ. Microbiol. 2002; 68: 910-916. https://doi.org/10.1128/AEM.68.2.910-916.2002
Oliveira SC, Splitter GA. Subcloning and expression of Brucella abortus L7/L12 ribosomal gene and T lymphocyte recognition of the recombinant protein. Infect. Immun. 1994; 62: 5201-5204. https://doi.org/10.1128/iai.62.11.5201-5204.1994
Al-Mariri A, Tibor A, Mertens P, Bolle X, Michel P, Godfroid J, Walravens K, Letesson JJ. Protection of BALB/c mice against Brucella abortus 544 challenge by vaccination with bacterioferritin or P39 recombinant proteins with CpG oligodeoxynucleotides as adjuvant. Infect. Immunol. 2001; 69: 4816-4822. https://doi.org/10.1128/IAI.69.8.4816-4822.2001
Tabatabai LB, Pugh GW. Modulation of immune response in Balb/c mice vaccinated with Brucella abortus Cu-Zn superoxide dismutase synthetic peptide vaccine. Vaccine 1994; 12: 912-924. https://doi.org/10.1016/0264-410X(94)90035-3
Sulakvelidze A, Pasterneck R, Brown T. Method for vaccination of poultry by using Bacteriophage lysate bacterin. 2009; U.S Patent US 2009/0297561 A1.
Prajapati A, Ramachandran D, Verma H, Abbas M, Rawat M. Therapeutic efficacy of Brucellaphage against Brucella abortus in mice model. Vet. World 2014; 7(1): 34-37. https://doi.org/10.14202/vetworld.2014.34-37
Mohan A, Saxena HM. Effects of bacteriophage therapy on host immune responses in brucellosis affected cattle. Acta Sci. Microbiol. 2020a; 3.6: 146-151. https://doi.org/10.31080/ASMI.2020.03.0622
Mohan A, Saxena HM. Non – invasive monitoring and assessment of phage therapy and phage targeting in bovine Brucellosis employing a Brucella - specific biomarker. Acta Sci. Microbiol. 2020b; 3.9: 59-68. https://doi.org/10.31080/ASMI.2020.03.0678
Mohan A, Saxena HM. Effect of phage targeting therapy of Brucellosis on host antibody response in cattle. PHAGE: Ther. Appl. Res. 2020c; 1(4): 223-229. https://doi.org/10.1089/phage.2020.0018