A Review on Molecular Factors Affecting Stomach Development
DOI:
https://doi.org/10.12970/2310-0796.2021.09.06Keywords:
Stomach, Specification, Regionalization, Transcription Factor, Lineage-specific markers, Genes, Cell lineage specificationAbstract
Stomach as a highly important portion of the GIT which is responsible for storage, digestion of food, immune defense, and hormonal organization of metabolic homeostasis; it originates from posterior foregut. The transcription factors such as Forkhead Box A (Foxa1/2/3), Gata Binding Protein (Gata4/6), Hnf1 Homeobox B (Hnf1b), and Sry- Box Transcription Factor 2 (Sox2) have a crucial role in gastric specification. Endodermal foregut patterning and regionalization, mesenchymal differentiation and cell lineage specification of stomach are affected by many essential factors such as Retinoic acid (RA) signalling, Wingless-related integration site (Wnt) signals, fibroblast growth factor (FGF) signals, Bone morphogenetic protein (BMP) signalling, sonic hedgehog (Shh) signalling and GATA family .There is a lack for understanding the organ lineage relationships and lineage-specific markers during stomach development and differentiation. The objectives of this review are to focus on the normal development and the mesenchymal differentiation of the stomach and to highlight the relatively limited information we have about genes and transcription factors associated with stomach specification, regionalization, and differentiation of component cell lineages.
References
Esrefoglu M, Taslidere E, Cetin A. Development of the Esophagus and Stomach. Bezmialem Science 2017; 5: 175-82. https://doi.org/10.14235/bs.2017.811
Kim T-H, Shivdasani RA. Stomach development, stem cells and disease. Development 2016; 143(4): 554-65. https://doi.org/10.1242/dev.124891
McCracken KW, Wells JM, editors. Mechanisms of embryonic stomach development. Seminars in Cell & Developmental Biology 2017; 66: 36-42. https://doi.org/10.1016/j.semcdb.2017.02.004
Mahajan T, Ganguly S, Saroj. Embryological development of gastrointestinal tract in animals. Ind J Sci Res and Tech 2015; 3(4): 22-4. Online Available at: http://www.indjsrt.com
Pangtey B, Kaul JM, Misara S. Histogenesis of Muscularis Mucosa and Muscularis Externa of Stomach: A Human Foetal Study. Journal of Clinical Diagnostic Research: JCDR 2017; 11(8): AC01. https://doi.org/10.7860/JCDR/2017/26219.10323
Thompson CA, DeLaForest A, Battle MA. Patterning the gastrointestinal epithelium to confer regional-specific functions. Developmental Biology 2018; 435(2): 97-108. https://doi.org/10.1016/j.ydbio.2018.01.006
McGeady TA, Quinn PJ, FitzPatrick E, Ryan M, Kilroy D, Lonergan P. Veterinary embryology: John Wiley & Sons; 2017.
Macarulla-Sanz E, Nebot-Cegarra J, Reina-de la Torre F. Computer-assisted stereological analysis of gastric volume during the human embryonic period. Journal of Anatomy 1996; 188(Pt 2): 395-401.
Willet SG, Mills JC. Stomach organ and cell lineage differentiation: from embryogenesis to adult homeostasis. Cellular Molecular Gastroenterology Hepatology 2016; 2(5): 546-59. https://doi.org/10.1016/j.jcmgh.2016.05.006
Stringer EJ, Pritchard CA, Beck F. Cdx2 initiates histodifferentiation of the midgut endoderm. FEBS Letters 2008; 582: 2555-2560. https://doi.org/10.1016/j.febslet.2008.06.024
Li Y, Pan J, Wei C, Chen J, Liu Y, Liu J, Zhang X, Evans SM, CuiY, Cui S. LIM homeodomain transcription factor Isl1 directs normal pyloric development by targeting Gata3. BMC Biology 2014; 12: 1-15. https://doi.org/10.1186/1741-7007-12-25
Hyttel P. Development of the gastro-pulmonary system. In Hyttel P., Sinowatz F., Vejlsted M. and Betteridge K. Essentials of Domestic Animal Embryology E-Book. First Edition.2010.SAUNDERS Elsevier: 216.
Sultan N. Prenatal developmental studies on the rabbit stomach [Master thesis]: Assuit University; 2018.
Grapin-Botton A, Melton DA. Endoderm development: from patterning to organogenesis. Trends in Genetics 2000; 16(3): 124-30. https://doi.org/10.1016/S0168-9525(99)01957-5
Bayha E, Jørgensen MC, Serup P, Grapin-Botton A. Retinoic acid signaling organizes endodermal organ specification along the entire antero-posterior axis. PloS One 2009; 4(6): e5845. https://doi.org/10.1371/journal.pone.0005845
Womble M, Pickett M, Nascone-Yoder N. Frogs as integrative models for understanding digestive organ development and evolution. In: Seminars in Cell & Developmental Biology 2016; 92-105. https://doi.org/10.1016/j.semcdb.2016.02.001
Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 1996; 122(3): 983-95.
Roberts DJ. Molecular mechanisms of development of the gastrointestinal tract. Developmental dynamics: an official publication of the American Association of Anatomists 2000; 219: 109-120. https://doi.org/10.1002/1097-0177(2000)9999:9999<::AID-DVDY1047>3.0.CO;2-6
Jacobsen CM, Narita N, Bielinska M, Syder AJ, Gordon JI, Wilson DB. Genetic mosaic analysis reveals that GATA-4 is required for proper differentiation of mouse gastric epithelium. Developmental Biology 2002; 241(1): 34-46. https://doi.org/10.1006/dbio.2001.0424
DeLaForest A, Quryshi AF, Frolkis TS, Franklin OD, Battle MA. GATA4 Is Required for Budding Morphogenesis of Posterior Foregut Endoderm in a Model of Human Stomach Development. Frontiers in Medicine 2020; 7: 44. https://doi.org/10.3389/fmed.2020.00044
Que J, Okubo T, Goldenring JR, Nam K-T, Kurotani R, Morrisey EE, et al. Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development 2007; 134(13): 2521-31. https://doi.org/10.1242/dev.003855
O'Neil A, Petersen CP, Choi E, Engwik AC, Goldenring JR. Unique Cellular Lineage Composition of the First Gland of the Mouse Gastric Corpus. Journal of Histochemistry & Cytochemistry 2017; 65(1): 47-58. https://doi.org/10.1369/0022155416678182
Haumaitre C, Barbacci E, Jenny M, Ott M, Gradwohl G, Cereghini S. Lack of TCF2/vHNF1 in mice leads to pancreas agenesis. Proceedings of the National Academy of Sciences 2005; 102(5): 1490-5. https://doi.org/10.1073/pnas.0405776102
Sherwood RI, Chen TYA, Melton DA. Transcriptional dynamics of endodermal organ formation. Developmental dynamics: an official publication of the American Association of Anatomists 2009; 238(1): 29-42. https://doi.org/10.1002/dvdy.21810
Raghoebir L, Bakker ER, Mills JC, Swagemakers S, Kempen MB-v, Munck AB-d, et al. SOX2 redirects the developmental fate of the intestinal epithelium toward a premature gastric phenotype. Journal of Molecular Cell Biology 2012; 4(6): 377-85. https://doi.org/10.1093/jmcb/mjs030
Fukuda K, Yasugi S. The molecular mechanisms of stomach development in vertebrates. Development, Growth, Differentiation 2005; 47(6): 375-82. https://doi.org/10.1111/j.1440-169X.2005.00816.x
Ramalho-Santos M, Melton DA, McMahon AP. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 2000; 127(12): 2763-72.
Kim B-M, Miletich I, Mao J, McMahon AP, Sharpe PA, Shivdasani RA. Independent functions and mechanisms for homeobox gene Barx1 in patterning mouse stomach and spleen. Development 2007; 134(20): 3603-13. https://doi.org/10.1242/dev.009308
Kim B-M, Woo J, Kanellopoulou C, Shivdasani RA. Regulation of mouse stomach development and Barx1 expression by specific microRNAs. Development 2011; 138(6): 1081-6. https://doi.org/10.1242/dev.056317
Jayewickreme CD, Shivdasani RA. Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1. Developmental Biology 2015; 405(1): 21-32. https://doi.org/10.1016/j.ydbio.2015.05.024
Verzi MP, Stanfel MN, Moses KA, Kim B-M, Zhang Y, Schwartz RJ, et al. Role of the homeodomain transcription factor Bapx1 in mouse distal stomach development. Gastroenterology 2009; 136(5): 1701-10. https://doi.org/10.1053/j.gastro.2009.01.009
Udager AM, Prakash A, Saenz DA, Schinke M, Moriguchi T, Jay PY, et al. Proper development of the outer longitudinal smooth muscle of the mouse pylorus requires Nkx2-5 and Gata3. Gastroenterology 2014; 146(1): 157-65. e10. https://doi.org/10.1053/j.gastro.2013.10.008
Karam SM, Li Q, Gordon JI. Gastric epithelial morphogenesis in normal and transgenic mice. American Journal of Physiology-GastrointestinalLiver Physiology 1997; 272(5): G1209-G20. https://doi.org/10.1152/ajpgi.1997.272.5.G1209
Nyeng P, Norgaard GA, Kobberup S, Jensen J. FGF10 signaling controls stomach morphogenesis. Developmental Biology 2006; 303(1): 295-310. https://doi.org/10.1016/j.ydbio.2006.11.017
Todisco A. Regulation of gastric metaplasia, dysplasia, and neoplasia by bone morphogenetic protein signaling. Cellularmolecular gastroenterologyhepatology 2017; 3(3): 339-47.
Kokubu H, Ohtsuka T, Kageyama R. Mash1 is required for neuroendocrine cell development in the glandular stomach. Genes to Cells 2008; 13(1): 41-51. https://doi.org/10.1111/j.1365-2443.2007.01146.x
McCracken KW, Aihara E, Martin B, Crawford CM, Broda T, Treguier J, et al. Wnt/β-catenin promotes gastric fundus specification in mice and humans. Nature 2017; 541(7636): 182-7. https://doi.org/10.1038/nature21021
Tian X, Jin RU, Bredemeyer AJ, Oates EJ, Błażewska KM, McKenna CE, et al. RAB26 and RAB3D are direct transcriptional targets of MIST1 that regulate exocrine granule maturation. Molecularcellular Biology 2010; 30(5): 1269-84. https://doi.org/10.1128/MCB.01328-09
Lo H-YG, Jin RU, Sibbel G, Liu D, Karki A, Joens MS, et al. A single transcription factor is sufficient to induce and maintain secretory cell architecture. Genesdevelopment 2017; 31(2): 154-71. https://doi.org/10.1101/gad.285684.116
Alaynick WA, Way JM, Wilson SA, Benson WG, Pei L, Downes M, et al. ERRγ regulates cardiac, gastric, and renal potassium homeostasis. Molecular Endocrinology 2010; 24(2): 299-309. https://doi.org/10.1210/me.2009-0114
Verzi MP, Khan AH, Ito S, Shivdasani RA. Transcription factor foxq1 controls mucin gene expression and granule content in mouse stomach surface mucous cells. Gastroenterology 2008; 135(2): 591-600. https://doi.org/10.1053/j.gastro.2008.04.019