Transfemoral Prosthesis with Polycentric Knee Mechanism: Design, Kinematics, Dynamics and Control Strategy
DOI:
https://doi.org/10.12970/2308-8354.2013.01.02.5Keywords:
Terms—Home-based rehabilitation, low-cost therapy, stroke rehabiltation, self-rehabilitation, compliant coupling.Abstract
Abstract. Research results obtained developing budget model of transfemoral prosthesis with polycentric knee joint mechanism and microprocessor control are presented in this work. Dimensions of the mechanism links were determined on the basis of multicriteria optimization by the method of systematic investigation of parameter space with parameters uniformly distributed in multidimensional cube. Control strategy of the prosthesis with active drive units of knee and ankle joints and variable rigidity of magnetorheological damper was formulated. Keywords: Transfemoral Prosthesis, Artificial Knee, Bernstein's Problem, Optimality Criterion, Synergy, Control System.References
[1] Perry J, Burnfield JM. Gait analysis: normal and pathological function. 2nded. Thorofare, NJ: Slack 2010.
[2] Prosthetic & Orthotic Information Resource/Artificial Limbs/Trans-Femoral (Above-Knee) Prosthesis. Available from: http://prostheticresource.com/prosthetic/artificiallimbs.html
[3] Blumentritt S, Schererr HW, Wellershaus U, Michael JW. Design Principles, Biomechanical Data and clinical experience with a polycentric knee offering controlled stance phase knee flexion: A preliminary report. J Prosth Orth 1997; 9(1): 18-19.
[4] Baker R. The history of gait analysis before the advent of modern computers. Gait Posture 2007; 26(3): 331-42. http://dx.doi.org/10.1016/j.gaitpost.2006.10.014
[5] Whittle MW. Gait analysis. An Introduction. 3rd ed. Oxford: Butterworth–Heinemann 2002.
[6] Craik R, Oatis CA. Gait analysis: Theory and application. 1st ed. Maryland Heights: Mosby 1995.
[7] Rose R, Gamble JG. Human walking. 3rd ed. Philadelphia: Lippincott Williams & Wilkins 2006.
[8] Harris GF, Smith PA. Human motion analysis: Current applications and future directions. IEEE 1996.
[9] Pasparakis D, Darras N. Normal walking principles, basic concepts, terminology 3-dimensional clinical gait analysis. EEXOT 2009; 60(4): 183-94.
[10] Gage JR. A quantitative description of normal gait. In: Gage JR, ed. The treatment of gait problems in cerebral palsy. 2nd ed. London, England: Mac Keith Press 2004.
[11] Saleh M, Murdoch G. In defence of gait analysis. observation and measurement in gait assessment. J Bone Joint Surg Br 1985; 67: 237-41.
[12] Moreira P, Lugrís U, Cuadrado J, Flores P. Biomechanical models for human gait analyses using inverse dynamics formulation. In Proc of the 5th Portuguese Biomechanics Congress 2013. Available from: http://repositorium.sdum. uminho.pt/bitstream/1822/23057/1/ 6.11.41%202013.pdf
[13] Bresler B, Frankel JP. The forces and moments in the leg during level walking. Trans ASME 1950; 72(1): 27-36.
[14] Vaughan CL, Davis BL, O’Connor JC. Dynamics of human gait. 2nd ed. Cape Town: Kiboho Publishers 1999.
[15] Onyshko S, Winter DA. A mathematical model for the dynamics of human locomotion. J Biomech 1980; 13(4): 361- 68. http://dx.doi.org/10.1016/0021-9290(80)90016-0
[16] Winter DA, Robertson DGE. Joint torque and energy patterns in normal gait. Biological Cybernetics 1978; 29(3): 137-42. http://dx.doi.org/10.1007/BF00337349
[17] Zarrugh MY. Kinematic prediction of intersegment loads and power at the joints of the leg in walking. J Biomech 1981; 14(10): 713-25. http://dx.doi.org/10.1016/0021-9290(81)90054-3
[18] Wells RP. The projection of the ground reaction force as a predictor of internal joint moments. Bull Prosth Res 1981; 18(1): 15-19.
[19] Gurfinkel VS, Fomin SV, Shtilkind TK. Determination of joint moments during locomotion. Biophysics 1970; 2: 380-83.
[20] Ghafari AS, Meghdari A, Vossoughi GR. Forward dynamics simulation of human walking employing an iterative feedback tuning approach. J Systems Control Eng 2009; 223(3): 289- 97.
[21] Zelik KE, Kuo AD. Human walking isn’t all hard work: evidence of soft tissue contributions to energy dissipation and return. J Exp Biol 2010; 213(4): 4257-64. http://dx.doi.org/10.1242/jeb.044297
[22] Bernstein NA. On the construction of movements (in Russian). Moscow: Medgiz 1947.
[23] Latash ML, Scholz JP, Schöner G. Toward a new theory of motor synergies. Motor Control 2007; 11(3): 276-308.
[24] Winters JM, Woo SL-Y. Multiple muscle systems: Biomechanics and movement organization. New York: Springer-Verlag 1990. http://dx.doi.org/10.1007/978-1-4613-9030-5
[25] Rosenbaum DA, Loukopoulos LD, Meulenbroek RGM, Vaughan J, Engelbrecht SE. Planning reaches by evaluating stored postures. Psychol Rev 1995; 102(1): 28-67. http://dx.doi.org/10.1037/0033-295X.102.1.28
[26] Mussa-Ivaldi FA, Hogan N. Integrable solutions of kinematic redundancy via impedance control. Int J Robotics Res 1991; 10(5): 481-91. http://dx.doi.org/10.1177/027836499101000504
[27] Todorov E. Optimality principles in sensorimotor control. Nat Neurosci 2004; 7(9): 907-15. http://dx.doi.org/10.1038/nn1309
[28] Arechavaleta G, Laumond J-P, Hicheur H, Alain Berthoz A. An optimality principle governing human walking. IEEE Trans Robotics 2008; 24(1): 5-14. http://dx.doi.org/10.1109/TRO.2008.915449
[29] Gorniak SL, Zatsiorsky VM, Latash ML. Emerging and disappearing synergies in a hierarchically controlled system. Exp Brain Res 2007; 183(2): 259-70. http://dx.doi.org/10.1007/s00221-007-1042-9
[30] Gelfand IM, Latash ML. On the problem of adequate language in motor control. Motor Control 1998; 2: 306-13.
[31] Latash ML, Scholz JP, Schöner G. Toward a new theory of motor synergies. Motor Control 2007; 11: 275-307.
[32] Zatsiorsky VM, Latash ML. Prehension synergies. Ex Sport Sci Rev 2004; 32: 75-80. http://dx.doi.org/10.1097/00003677-200404000-00007
[33] Popovic DB, Jonic S. Determining synergy between joint angles during locomotion by radial basis function neural networks. In Proc. of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 1998; 20(5): 2301-04.
[34] Smolyaninov VV. Spatio-temporal problems of locomotion control. Adv Phys Sci 2000; 170(10): 1063-28.
[35] Mijovic B, Popovic MB, Popovic DB. Synergistic control of forearm based on accelerometer data and artificial neural networks. Brazilian J Med Biol Res 2008; 41: 389-97. http://dx.doi.org/10.1590/S0100-879X2008005000019
[36] Latash ML, Gorniak S, Zatsiorsky VM. Hierarchies of synergies in human movements. Kinesiology (Zagreb) 2008; 40(1): 29-38.
[37] Alessandro C, Delis I, Nori F, Panzeri S, Berret B. Muscle synergies in neuroscience and robotics: From input-space to task-space perspectives. Front Comp Neuro 2013; 7: 43.
[38] Alessandro C, Nori F. Identification of synergies by optimization of trajectory tracking tasks. I Proc of IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics 2012; pp. 924-30.
[39] Cappellini G, Ivanenko YP, Poppele RE, Lacquaniti F. Motor patterns in human walking and running. J Neurophysiol 2006; 95: 3426-37. http://dx.doi.org/10.1152/jn.00081.2006
[40] d'Avella A, Bizzi E. Shared and specific muscle synergies in natural motor behaviors. Proc Natl Acad Sci USA 2005; 102: 3076-81. http://dx.doi.org/10.1073/pnas.0500199102
[41] Fautrelle L, Ballay Y, Bonnetblanc F. Muscular synergies during motor corrections: Investigation of the latencies of muscle activities. Beh Brain Res 2010; 214: 428-36. http://dx.doi.org/10.1016/j.bbr.2010.06.015
[42] Hauser H, Neumann G, Ijspeert AJ, Maass W. Biologically inspired kinematic synergies enable linear balance control of a humanoid robot. Biol Cybernet 2011; 104: 235-49. http://dx.doi.org/10.1007/s00422-011-0430-1
[43] Weiss EJ, Flanders M. Muscular and postural synergies of the human hand. J Neurophysiol 2004; 92: 523-35. http://dx.doi.org/10.1152/jn.01265.2003
[44] Latash ML. Control of human movement. Urbana, IL: Human Kinetics 1993.
[45] Latash ML. Synergy. New York: Oxford University Press 2008. http://dx.doi.org/10.1093/acprof:oso/9780195333169.001.000 1
[46] Kolesova M, Polyakov A, Kalinin M. Quantitative and qualitative estimations of the manipulator end-effector trajectory planning by synergetic criterion. FactaUniversitatis. Series Mechanics, Automatic Control and Robotics 2008; 7(1): 53-70.
[47] Huang Q, Yu Z, Zhang W, Duan X, Huang Y, Li K. Generation of humanoid walking pattern based on human walking measurement. In Proc. of the IEEE-RAS International Conference on Humanoid Robots (Humanoids) 2008; pp. 99-104.
[48] Serhan H, Nasr C, Hénaff P, Ouezdou F. A new control strategy for ROBIAN biped robot inspired from human walking. In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2008; pp. 2479- 85.
[49] Chalodhorn R, Grimes D, Grochow K, Rao R. Learning to walk through imitation. In Proc. of the International Conference on Artificial Intelligence 2007; pp. 2084-90.
[50] Faber F, Behnke S. Stochastic Optimization of bipedal walking using gyro feedback and phase resetting. In Proc. of the IEEE-RAS International Conference on Humanoid Robots (Humanoids) 2007; pp. 203-09.
[51] Niehaus N, Röfer T, Laue T. Gait optimization on a humanoid robot using particle swarm optimization. In Proc. of 2ndWorkshop on Humanoid Soccer Robots at the IEEE-RAS International Conference on Humanoid Robots (Humanoids) 2007: Available from: http://www.ais.uni-bonn.de/humanoidsoccer/ws07/papers/HSR-2-101.pdf
[52] Hemker T, Stelzer M, Stryk O, Sakamoto H. Efficient walking speed optimization of a humanoid robot. Int J Rob Res 2009; 28(2): 303-14. http://dx.doi.org/10.1177/0278364908095171
[53] Michael JW. Modern prosthetic knee mechanisms. Clin Orth Rel Res 1999; (361): 39-47.
[54] Radcliffe CW. Four-Bar linkage prosthetic knee mechanisms: Kinematics, alignment and prescription criteria. Prosth OrthInt 1994; 18(3): 159-73.
[55] Sobol IM, Statnikov RB. The choice of optimal parameters in tasks with many criteria, Moscow: Science 1981.
[56] Statnikov RB, Matusov JB. Multicriteria optimization and engineering. New York: Chapman & Hall 1995. http://dx.doi.org/10.1007/978-1-4615-2089-4
[57] Poliakov O, Chepenyuk O, Pashkov Y, Kalinin M, Kramar V. Multicriteria synthesis of a polycentric kneeprosthesis for transfemoral amputees. Int J Chem Biol Eng 2012; 6: 147- 52.
[58] Poliakov O, Pashkov Y, Kolesova M, Chepenyuk O, Kalinin M, Kramar V. New Laguerre’s type method solving of a polynomial equations systems. Int J WASET 2012; 69: 888- 93.
[59] Lurie AI. Aanalytical mechanics. Moscow: Fizmatgiz 1961.
[60] Formal'skiy AM. Moving the anthropomorphic mechanisms. Moscow: Science 1982.
[61] Mauch HA. Stance control for above-knee artificial legs design considerations in the S-N-S knee. Bul Prosth Res Fall 1968.
[62] Zahedi S, Sykes A, Lang S, Cullington I. Adaptive prosthesis – a new concept in prosthetic knee control. Robotica 2005; 23: 337-44. http://dx.doi.org/10.1017/S0263574704001365
[63] Bar A, Ishai G, Meretsky P, Koren Y. Adaptive microcomputer control of an artificial knee in level walking. J Biomed Eng 1983; 5: 145-50. http://dx.doi.org/10.1016/0141-5425(83)90034-1
[64] Vukobratovi M, Kiranski N. Real time dynamics of manipulation robots. Berlin: Springer-Verlag 1985.
[65] Popovic D, Tomovic R, Tepavac D. Control aspects of active above-knee prosthesis. Int J Man-Mach Stud 1991; 35(6): 751-67. http://dx.doi.org/10.1016/S0020-7373(05)80159-2
[66] Popovi D, O uztöreli MN, Stein RB. Optimal control for the active above-knee prosthesis. Ann Biomed Eng 1991; 19(2): 131-50. http://dx.doi.org/10.1007/BF02368465
[67] Vallery H, Burgkart R, Hartmann C, Mitternacht J, Riener R, Buss M. Complementary limb motion estimation for the control of active knee prostheses. Biomed Eng 2011; 56(1): 45-51. http://dx.doi.org/10.1515/bmt.2010.057
[68] Vicentini F, Canina M, Rovetta A. Lower limb prosthesis: Final prototype release and control setting methodologies. Inf in Con, Autom and Rob II 2007; pp. 163-73.
[69] Scandaroli G, Borges G, Ferreira da Rocha A, Nascimento F. Adaptive knee joint control for an active amputee prosthesis. In Proc. of the IEEE Latin American Robotic Symposium 2008; pp. 164-69. http://dx.doi.org/10.1109/LARS.2008.12
[70] Wang F, Wu C, Zhang Y, Xu X. Design and implementation of coordinated control strategy for biped robot with heterogeneous legs. In Proc. of IEEE International Conference on Mechatronics and Automation 2007; pp. 1559-64.
[71] Zlatnik D, Steiner B, Schweitzer G. Finite-state control of a trans-femoral (TF) prosthesis. IEEE Transaction on Control Systems Technolog 2002; 10(3): 408-20. http://dx.doi.org/10.1109/87.998030
[72] Stein JL, Flowers WC. Stance phase control of above-knee prostheses: knee control versus SACH foot design. J Biomech 1988; 20(1): 19-28. http://dx.doi.org/10.1016/0021-9290(87)90263-6
[73] Sup F, Bohara A, Goldfarb M. Designed and control of a powered transfemoral prosthesis. Int J Rob Res 2008; 27(2): 263-73. http://dx.doi.org/10.1177/0278364907084588
[74] Wang TK, Ju MS, Tsuei YG. Adaptive control of above knee electro-hydraulic prosthesis. J Biomech Eng 1992; 114(3): 421-24. http://dx.doi.org/10.1115/1.2891406
[75] Kapti AO, Yucenur MS. Design and control of an active artificial knee joint. Mech Mach Theory 2006; 41(12): 1477- 85. http://dx.doi.org/10.1016/j.mechmachtheory.2006.01.017
[76] Nishii J. Legged insects select the optimal locomotor pattern based on energetic cost. Biol Cyb 2000; 83: 435-42. http://dx.doi.org/10.1016/j.robot.2011.12.006
[77] Nishii J, Hashizume Y, Kaichida S, Suenaga H, Tanaka Y. Constraint and exploitation of redundant degrees of freedom during walking. Rob Auton Sys 2012; 60: 679-84.
[78] Nishii J. Legged insects select the optimal locomotor pattern based on energetic cost. Biol Cyb 2000; 83: 435-42.
[79] Zarrugh MY, Todd FN, Ralston HJ. Optimization of energy expenditure during level walking. Eur J Ap Phys 1974; 33: 293-306.
[80] Zarrugh MY, Radcliffe CW. Predicting metabolic cost of level walking. Eur J Ap Phys 1978; 38: 215-23.
[81] Minetti AE, Alexander RM. A theory of metabolic costs for bipedal gaits. J Theor Biol 1997; 186: 467-76. http://dx.doi.org/10.1006/jtbi.1997.0407
[82] Donelan JM, Kram R, Kuo AD. Mechanical and metabolic determinants of the preferred step width in human walking.In Proc. of the Royal Society of London, Series B 2001; 268: 1985-92. http://dx.doi.org/10.1098/rspb.2001.1761
[83] Kaichida S, Hashizume Y, Nishii J. An analysis of leg trajectory of human walking from the view point of joint coordination.In Proc. of The 3rd International Symposium on Mobiligence 2009; pp. 409-12.
[84] Kaichida S, Hashizume Y, Ogihara N, Nishii J. An analysis of leg joint synergy during bipedal walking in Japanes emacaques. In Proc of 33rd Annual International Conference of the IEEE EMBS (Boston, Massachusetts USA) 2011; pp. 8183-86.
[85] Vallery H, Buss M. Complementary limb motion estimation based on interjoint coordination using principal components analysis. In Proc. of the IEEEInternational Conference on Control Applications (Munich, Germany) 2006; pp. 933-38.
[86] Alzaydi AA, Cheung A, Joshi N, Wong S. Active prosthetic knee fuzzy logic - PID motion control, sensors and test platform design. Int J Sci Eng Res 2012; 2(12): 1-17.
[87] Kawato M, Furukawa K, Suzuki R. A hierarchical neuralnetwork model for control and learning of voluntary movement. Biol Cyber 1987; 57: 169-85.
[88] Miyamoto H, Kawato M, Setoyama T, Suzuki R. Feedbackerror-learning neural network for trajectory control of a robotic manipulator. Neur Networks 1988; 1: 251-65. http://dx.doi.org/10.1016/0893-6080(88)90030-5
[89] Kalanovic VD, Popovic D, Skaug NT. Feedback error learning neural network fortrans-femoral prosthesis. IEEE Trans Rehab Eng 2000; 8(1): 71-80. http://dx.doi.org/10.1109/86.830951