Effects of Compliant Coupling on Cooperative and Bimanual Task Performance
DOI:
https://doi.org/10.12970/2308-8354.2013.01.02.4Keywords:
Lower limb prosthesis, Moment, Inverse dynamics, Free body diagram, Link segment model.Abstract
Coupled bimanual rehabilitation allows an individual with hemiparesis to use their sound arm to assist their impaired arm during rehabilitation. This method of self-rehabilitation could be used as a low-cost alternative for home rehabilitation, however, few studies have looked at the effects of coupling stiffness and symmetry mode on bimanual task performance. We have developed a compliant bimanual rehabilitation device (CBRD) that allows for the symmetry mode and stiffness of the coupling to be easily changed. Our results show the CBRD effectively couples the motions of two individuals in a task simulating hemiparesis, and that for some tasks, the symmetry mode and stiffness affect completion time. A stiffer coupling resulted in faster completion times and lower error. The device also reduced the completion time and error of bimanual tasks performed by healthy individuals. Keywords: Terms—Home-based rehabilitation, low-cost therapy, stroke rehabiltation, self-rehabilitation, compliant coupling.References
[1] Langhorne P, Wagenaar R, Partridge C. Physiotherapy after stroke: more is better? Physiother Res Int 1996; 1(2): 75-88. http://dx.doi.org/10.1002/pri.6120010204
[2] Kwakkel G, Wagenaar R, Koelman T, Lankhorst G, Koetsier J. Effects of intensity of rehabilitation after stroke: A research synthesis. Stroke 1997; 28(8): 1550-6. http://dx.doi.org/10.1161/01.STR.28.8.1550
[3] Oden R. Systematic therapeutic exercises in the management of the paralyses in hemiplegia. JAMA 1918; 23: 828-33. http://dx.doi.org/10.1001/jama.1918.02600120008003
[4] Neuhaus B, Ascher E, Coullon B, Donohue M, Einbond A, Glover J, et al. A survey of rationales for and against hand splinting in hemiplegia. Am J Occup Ther 1981; 35(2): 83-90. http://dx.doi.org/10.5014/ajot.35.2.83
[5] Taub E, Uswatte G, Pidikiti R. Constraint-induced movement therapy: A new family of techniques with broad application to physical rehabilitation-a clinical review. J Rehabil Res Dev 1999; 36(3) 237-51.
[6] Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, et al. Effect of Constraint-Induced Movement Therapy on Upper Extremity Function 3 to 9 Months After Stroke: The EXCITE Randomized Clinical Trial. JAMA 2006; 296(17): 2095-104. http://dx.doi.org/10.1001/jama.296.17.2095
[7] Bobath B. Adult hemiplegia: Evaluation and treatment. plus 0.5em minus 0.4emLondon, UK: Heinemann Medical Books Ltd., 1970.
[8] Knott M, Voss D. Proprioceptive Neuromuscular Facilitation: Patterns and Techniques, 2ed, 2nd ed. plus 0.5em minus 0.4emNew York, NY: Harper & Row Publishers Inc., 1968.
[9] Krebs HI, Hogan N, Aisen ML, Volpe BT. Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng 1998; 6: 75-87. http://dx.doi.org/10.1109/86.662623
[10] Timmermans A, Seelen H, Willmann R, Kingma H. Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. J Neuroengineering Rehabil 2009; 6(1). http://dx.doi.org/10.1186/1743-0003-6-1
[11] Kahn L, Zygman M, Rymer WZ, Reinkensmeyer D. Robotassisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study. J Neuroengineering Rehabil 2006; 3(1): 12. http://dx.doi.org/10.1186/1743-0003-3-12
[12] Kwakkel G, Kollen BJ, Krebs HI. Effects of Robot-Assisted Therapy on Upper Limb Recovery After Stroke: A Systematic Review. Neurorehabil Neural Repair 2008; 22(2): 111-21. http://dx.doi.org/10.1177/1545968307305457
[13] Marchal-Crespo L, Reinkensmeyer D. Review of control strategies for robotic movement training after neurologic injury. J Neuroengineering Rehabil 2009; 6(1): 20. http://dx.doi.org/10.1186/1743-0003-6-20
[14] Huang V, Krakauer J. Robotic neurorehabilitation: a computational motor learning perspective. J Neuroengineering Rehabil 2009; 6(1): 5. http://dx.doi.org/10.1186/1743-0003-6-5
[15] Zheng H, Davies R, Zhou H, Hammerton J, Mawson SJ, Ware PM, et al. Smart project: application of emerging information and communication technology to homebased rehabilitation for stroke patients. Int J Disabil Hum Dev 2006; 5(3): 271-76. http://dx.doi.org/10.1515/IJDHD.2006.5.3.271
[16] Reinkensmeyer DJ, Pang CT, Nessler JA, Painter CC. Java therapy: Web-based robotic rehabilitation. Integrat Assist Technol Inform Age 2001; 9: 66-71.
[17] Johnson M, Van der Loos H, Burgar C, Shor P, Leifer L. Experimental results using force-feedback cueing in robotassisted stroke therapy. IEEE Trans Neural Syst Rehabilitation Engr 2005; 13: 335-48. http://dx.doi.org/10.1109/TNSRE.2005.850428
[18] Johnson M, Ramachandran B, Paranjape R, Kosasih J. Feasibility study of theradrive: a low-cost game-based environment for the delivery of upper arm stroke therapy. Proc IEEE Eng Med Biol Soc 2006.
[19] Burgar C, Lum P, Shor P, Van der Loos H. Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience. J Rehab Res Develop 2000; 37: 663-74.
[20] Wolf SL, LeCraw DE, Barton LA. Comparison of Motor Copy and Targeted Biofeedback Training Techniques for Restitution of Upper Extremity Function Among Patients with Neurologic Disorders. Phys Ther 1989; 69(9): 719-35.
[21] van Delden A, Beek CPP, Kwakkel G. Unilateral versus bilateral upper limb exercise therapy after stroke: A systematic review. J Rehabil Med 2012; 44(2): 106-17. http://dx.doi.org/10.2340/16501977-0928
[22] Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil 2003; 84(6): 915-20. http://dx.doi.org/10.1016/S0003-9993(02)04954-7
[23] Hesse S, Werner C, Pohl M, Mehrholz J, Puzich U, Krebs HI. Mechanical arm trainer for the treatment of the severely affected arm after a stroke: a single-blinded randomized trial in two centers. Am J Phys Med Rehabil 2008; 87(10): 779- 88. http://dx.doi.org/10.1097/PHM.0b013e318186b4bc
[24] Jordan K, Sampson M, Hijmans J, King M, Hale L. Imable system for upper limb stroke rehabilitation. Proc Int Conf Virtual Rehabilitation 2011; 1-2.
[25] Diserens K, Perret N, Chatelain S, Bashir S, Ruegg D, Vuadens P, Vingerhoets F. The effect of repetitive arm cycling on post stroke spasticity and motor control: Repetitive arm cycling and spasticity. J Neurological Sci 2007; 253: 18- 24. http://dx.doi.org/10.1016/j.jns.2006.10.021
[26] Whitall J, Waller S, Silver K, Macko R. Repetitive Bilateral Arm Training With Rhythmic Auditory Cueing Improves Motor Function in Chronic Hemiparetic Stroke. Stroke 2000; 31(10): 2390-95. http://dx.doi.org/10.1161/01.STR.31.10.2390
[27] Whitall J, Waller S, Sorkin J, Forrester L, Macko R, Hanley D, Goldberg A, Luft A. Bilateral and unilateral arm training improve motor function through differing neuroplastic mechanisms: a single-blinded randomized controlled trial. Neurorehabil Neural Repair 2011; 25(2): 118-29. http://dx.doi.org/10.1177/1545968310380685
[28] Malabet HG, Robles RA, Reed KB. Symmetric motions for bimanual rehabilitation. in Proc. IEEE/RSJ Int Intelligent Robots and Systems (IROS) Conf 2010; 5133-5138.
[29] McAmis S, Reed KB. Symmetry modes and stiffnesses for bimanual rehabilitation. Proc IEEE Int Conf Rehabilitation Robotics 2011; 1106-1111.
[30] Schmidt RA, Bjork RA. New conceptualizations of practice: Common principles in three paradigms suggest new concepts for training. Psychol Sci 1992; 3(4): 207-17. http://dx.doi.org/10.1111/j.1467-9280.1992.tb00029.x
[31] McAmis S, Reed KB. Simultaneous perception of forces and motions using bimanual interactions. IEEE Trans Haptics 2012; 5(3): 220-30. http://dx.doi.org/10.1109/TOH.2012.39