Progress and Prospects in EEG-Based Brain-Computer Interface: Clinical Applications in Neurorehabilitation 

Authors

  • Sergio Machado Laboratory of Panic and Respiration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Rio de Janeiro, Brazil
  • Leonardo Ferreira Almada Institute of Phylosophy (IFILO), Federal University of Uberlândia (UFU), Minas Gerais, Brazil
  • Ramesh Naidu Annavarapu Department of Physics, School of Physical, Chemical and Applied Sciences, Pondicherry University, Puducherry – 605 014, India

DOI:

https://doi.org/10.12970/2308-8354.2013.01.01.4

Keywords:

Rehabilitation robot, Stability and smoothness, Dynamic interpolation, Impedance control.

Abstract

 Several patients are no longer able to communicate effectively or even interact with the outside world in ways that most of us do it. For instance, severe cases astetraplegic or post-stroke patients are literally 'locked in' their bodies, unable to exert any motor control after a spinal cord injury or a brainstem stroke, requiring alternative methods of communication and control. However, in the near future, their brains may offer them a way out. EEG-based brain-computer interface (BCI) is the technique utilized to measure brain activity and by the way that different brain signals are translated into commands that control an effector (e.g., controlling a spelling system via eye movements). Here,we aim to review the basic concepts of EEG-based BCI and the main advances in communication, in motor control restoration and in downregulation of cortical activitythat seem to be relevant for clinical applications in the coming years forneurorehabilitation of severely limited patients. It allows brain-derived communication in patients with amyotrophic lateral sclerosis and motor control restoration in patients after spinal cord injury and stroke. In addition, epilepsy and attention deficit and hyperactive disorder patients were able to downregulate their cortical activity. Owing to the rapid progression of EEG-based BCI research over the last few years and the swift ascent of computer processing speeds and signal analysis techniques, we suggest that emerging ideas related to clinical neurorehabilitation of severely limited patients will generate viable clinical applications in the near future. Keywords: Amyotrophic Lateral Sclerosis, attention deficit and hyperactive disorder, EEG-based brain-computer interface, epilepsy, neurorehabilitation, spinal cord, stroke.

References


[1] Isa T, Fetz EE, Müller KR. Recent advances in brainmachine interfaces. Neural Netw 2009; 22: 1201-2. http://dx.doi.org/10.1016/j.neunet.2009.10.003
[2] Mason SG, Bashashati A, Fatourechi M, Navarro KF, Birch GE. A comprehensive survey of brain interface technology designs. Ann Biomed Eng 2007; 35: 137-69. http://dx.doi.org/10.1007/s10439-006-9170-0
[3] Millan J del R, Rupp R, Mueller-Putz G, Murray-Smith R, Giugliemma C, Tanger-mann M, et al. Combining braincomputer interfaces and assistive technologies: State-of-theart and challenges. Front Neuro-Prosthetics 2010; 4: 161.
[4] Wang W, Collinger JL, Perez MA, Tyler-Kabara EC, Cohen LG, Birbaumer N, et al. Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity. Phys Med Rehabil Clin N Am 2010; 21: 157-78. http://dx.doi.org/10.1016/j.pmr.2009.07.003
[5] Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain-computer interfaces for communication and control. Clin Neurophysiol 2002; 113: 767-91. http://dx.doi.org/10.1016/S1388-2457(02)00057-3
[6] Birbaumer N, Cohen LG. Brain-computer interfaces: communication and restoration of movement in paralysis. J Physiol 2007; 579: 621-36. http://dx.doi.org/10.1113/jphysiol.2006.125633
[7] Birbaumer N, Ramos Murguialday A, Weber C, Montoya P. Neurofeedback and brain computer interface clinical applications. Int Rev Neurobiol 2009; 86: 107-17. http://dx.doi.org/10.1016/S0074-7742(09)86008-X
[8] Blankertz B, Losch F, Krauledat M, Dornhege G, Curio G, Müller KR. The Berlin Brain-Computer Interface: accurate performance from first-session in BCI-naive subjects. IEEE Trans Biomed Eng 2008; 55: 2452-62. http://dx.doi.org/10.1109/TBME.2008.923152
[9] Scherer R, Müller-Putz GR, Pfurtscheller G. Flexibility and practicality graz brain-computer interface approach. Int Rev Neurobiol 2009; 86: 119-23. http://dx.doi.org/10.1016/S0074-7742(09)86009-1
[10] Dornhege G, Millan JR, Hinterberger T, McFarland D, Müller K. Toward brain-computer interfacing. Cambridge, MA: The MIT Press 2007.
[11] Pfurtscheller G, Brunner C, Schlögl A, Lopes da Silva FH. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 2006; 31: 153- 9. http://dx.doi.org/10.1016/j.neuroimage.2005.12.003
[12] Wolpaw JR. Brain-computer interfaces (ICCs) for communication and control: a mini-review. Suppl Clin Neurophysiol 2004; 57: 607-13. http://dx.doi.org/10.1016/S1567-424X(09)70400-3
[13] Krusienski DJ, Wolpaw JR. Brain-computer interface research at the wadsworth center developments in noninvasive communication and control. Int Rev Neurobiol 2009; 86: 147-57. http://dx.doi.org/10.1016/S0074-7742(09)86011-X
[14] Wolpaw JR, McFarland DJ. Control of two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Natl Acad Sci USA 2004; 101: 17849-54. http://dx.doi.org/10.1073/pnas.0403504101
[15] Birbaumer N. Slow cortical potentials: Plasticity, operant control, and behavioral effects. Neuroscientist 1999; 5: 74-8. http://dx.doi.org/10.1177/107385849900500211
[16] Birbaumer N. Breaking the silence: brain-computer interfaces (BCI) for communication and motor control. Psychophysiology 2006; 43: 517-32. http://dx.doi.org/10.1111/j.1469-8986.2006.00456.x
[17] Birbaumer N, Kubler A, Ghanayim N, Hinterberger T, Perelmouter J, Kaiser J, et al. The thought translation device (TTD) for completely paralyzed patients. IEEE Trans Rehabil Eng 2000; 8: 190-3. http://dx.doi.org/10.1109/86.847812
[18] Sellers EW, Donchin E. A P300-based brain-computer interface: Initial tests by ALS patients. Clin Neurophysiol 2006; 117: 538-48. http://dx.doi.org/10.1016/j.clinph.2005.06.027
[19] Weigelt S, Muckli L, Kohler A. Functional magnetic resonance adaptation in visual neuroscience. Rev Neurosci 2008; 19: 363-80. http://dx.doi.org/10.1515/REVNEURO.2008.19.4-5.363
[20] Buttfield A, Ferrez PW, Millan J del R. Towards a robust BCI: Error recognition and online learning. IEEE Trans Neural Sys Rehabil Eng 2006; 14: 164-8. http://dx.doi.org/10.1109/TNSRE.2006.875555
[21] Lu S, Guan C, Zhang H. Unsupervised brain computer interface based on inter-subject information and online adaptation. IEEE Trans Neural Systems Rehabil Eng 2009; 17: 135-45. http://dx.doi.org/10.1109/TNSRE.2009.2015197
[22] Millan JR. Adaptive brain interfaces. Comm ACM 2003; 46: 74-80. http://dx.doi.org/10.1145/636772.636773
[23] Millan J del R, Renkens F, Mourino J, Gerstner W. Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Trans Biomed Eng 2004; 51: 1026-33. http://dx.doi.org/10.1109/TBME.2004.827086
[24] Shenoy P, Krauledat M, Blankertz B, Rao RPN, Müller KR. Towards adaptive classification for BCI. J Neural Eng 2006; 3: 13-23. http://dx.doi.org/10.1088/1741-2560/3/1/R02
[25] Vidaurre C, Blankertz B. Towards a cure for BCI illiteracy. Brain Topogr 2010; 23: 194-8. http://dx.doi.org/10.1007/s10548-009-0121-6
[26] Pfurtscheller G, Neuper C, Guger C, HarkamW, Ramoser H, Schlögl A, et al. Current trends in Graz brain-computer interface (BCI) research. IEEE Trans Rehabil Eng 2000; 8: 216-9. http://dx.doi.org/10.1109/86.847821
[27] Curran E, Sykacek P, Stokes M, Roberts SJ, Penny W, Johnsrude I, et al. Cognitive tasks for driving a braincomputer interfacing system: a pilot study. IEEE Trans Neural Syst Rehabil Eng 2004; 12: 48-54. http://dx.doi.org/10.1109/TNSRE.2003.821372
[28] Naito E, Sadato N. Internal simulation of expected sensory experiences before movements get started. Rev Neurosci 2003; 14: 387-99. http://dx.doi.org/10.1515/REVNEURO.2003.14.4.387
[29] Pfurtscheller G, Müller-Putz GR, Schlögl A, Graimann B, Scherer R, Leeb R, et al. 15 Years of BCI Research at Graz University of Technology: Current Projects. IEEE Trans Neural Syst Rehabil Eng 2006; 14: 205-10. http://dx.doi.org/10.1109/TNSRE.2006.875528
[30] Blankertz B, Dornhege G, Krauledat M, Müller KR, Curio G. The noninvasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjects. Neuroimage 2007; 37: 539-50. http://dx.doi.org/10.1016/j.neuroimage.2007.01.051
[31] Pfurtscheller G, Neuper C. Future prospects of ERD/ERS in the context of brain-computer interface (BCI) developments. Prog Brain Res 2006; 159: 433-7. http://dx.doi.org/10.1016/S0079-6123(06)59028-4
[32] McFarland DJ, Krusienski DJ, Sarnacki WA, Wolpaw JR. Emulation of computer mouse control with a noninvasive brain–computer interface. J Neural Eng 2008; 5: 101-10. http://dx.doi.org/10.1088/1741-2560/5/2/001
[33] Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, et al. A spelling device for the paralysed. Nature 1999; 398: 297-8. http://dx.doi.org/10.1038/18581
[34] Chatterjee A, Aggarwal V, Ramos A, Acharya S, Thakor NV. A brain-computer interface with vibrotactile biofeedback for haptic information. J Neuroeng Rehabil 2007; 4: 40. http://dx.doi.org/10.1186/1743-0003-4-40
[35] Middendorf M, McMillan G, Calhoun G, Jones KS. Braincomputer interfaces based on the steady-state visual-evoked response. IEEE Trans Rehabil Eng 2000; 8: 211-3. http://dx.doi.org/10.1109/86.847819
[36] Müller-Putz GR, Scherer R, Pfurtscheller G, Rupp R. EEGbased neuroprosthesis control: a step towards clinical practice. Neurosci Lett 2005; 382: 169-74. http://dx.doi.org/10.1016/j.neulet.2005.03.021
[37] Müller-Putz GR, Scherer R, Pfurtscheller G, Rupp R. Braincomputer interfaces for control of neuroprostheses: From synchronous to asynchronous mode of operation. Biomed Tech (Berl) 2006; 51: 57-63. http://dx.doi.org/10.1515/BMT.2006.011
[38] Neuper C, Müller-Putz GR, Scherer R, Pfurtscheller G. Motor imagery and EEG based control of spelling devices and neuroprostheses. Prog Brain Res 2006; 159: 393-409. http://dx.doi.org/10.1016/S0079-6123(06)59025-9
[39] Lauer, R, Peckham, P, Kilgore, K, Heetderks, W. Applications of cortical signals to neuro-prosthetic control: A critical review. IEEE Trans Rehabil 2000; 8: 205-8. http://dx.doi.org/10.1109/86.847817
[40] Pfurtscheller G, Guger C, Mueller G, Krausz G, Neuper C. Brain oscillations control hand orthosis in a tetraplegic. Neurosci Lett 2000; 292: 211-4. http://dx.doi.org/10.1016/S0304-3940(00)01471-3
[41] Sinkjaer T, Haugland M, Inmann A, Hansen M, Nielsen KD. Biopotentials as command and feedback signals in functional electrical stimulation systems. Med Eng Phys 2003; 25: 29- 40. http://dx.doi.org/10.1016/S1350-4533(02)00178-9
[42] Cincotti F, Kauhanen L, Aloise F, Palomäki T, Caporusso N, Jylänki P, et al. Vibrotactile feedback for brain computer interface operation. Comput Intell Neurosci 2007; 48937.
[43] Barbero A, Grosse-Wentrup M. Biased feed back in braincomputer interfaces. J Neuroeng Rehabil 2010; 7: 34. http://dx.doi.org/10.1186/1743-0003-7-34
[44] Neuper C, Scherer R, Wriessnegger S, Pfurtscheller G. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a braincomputer interface. Clin Neurophysiol 2009; 120: 239-47. http://dx.doi.org/10.1016/j.clinph.2008.11.015
[45] Bonnard M, de Graaf J, Pailhous J. Interactions between cognitive and sensorimotor functions in the motor cortex:evidence from the preparatory motor sets anticipating a perturbation. Rev Neurosci 2004; 15: 371-82. http://dx.doi.org/10.1515/REVNEURO.2004.15.5.371
[46] Tyc F, Boyadjian A. Cortical plasticity and motor activity studied with transcranial magnetic stimulation. Rev Neurosci 2006; 17: 469-95. http://dx.doi.org/10.1515/REVNEURO.2006.17.5.469
[47] Birbaumer N, Weber C, Neuper C, Buch E, Haapen K, Cohen L. Physiological regulation of thinking: brain-computer interface (BCI) research. Prog Brain Res 2006; 159: 369-91. http://dx.doi.org/10.1016/S0079-6123(06)59024-7
[48] Sitaram R, Caria A, Birbaumer N. Hemo-dynamic braincomputer interfaces for communication and rehabilitation. Neural Netw 2009; 22: 1320-8. http://dx.doi.org/10.1016/j.neunet.2009.05.009
[49] Sorger B, Dahmen B, Reithler J, Gosseries O, Maudoux A, Laureys S, et al. Another kind of ‘BOLD Response’: answering multiple-choice questions via online decoded single-trial brain signals. Prog Brain Res 2009; 177: 275-92. http://dx.doi.org/10.1016/S0079-6123(09)17719-1
[50] Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 1999; 110: 1842-57. http://dx.doi.org/10.1016/S1388-2457(99)00141-8
[51] Toro C, Deuschl G, Thatcher R, Sato S, Kufta C, Hallett M. Event-related desynchronization and movement-related cortical potentials on the ECoG and EEG. Electroencephalogr Clin Neurophysiol 1994; 93: 380. http://dx.doi.org/10.1016/0168-5597(94)90126-0
[52] Fukunaga K. Inroduction to statistical pattern recognition. 2nd edition. San Diego, CA: Academic Press 1990.
[53] Koles ZJ, Soong ACK. EEG source localization: implementing the spatiotemporal decomposition approach. Electroencephalogr Clin Neurophysiol 1998; 107: 343-52. http://dx.doi.org/10.1016/S0013-4694(98)00084-4
[54] Müller-Gerking J, Pfurtscheller G, Flyvbjerg H. Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin Neurophysiol 1999; 110: 787-98. http://dx.doi.org/10.1016/S1388-2457(98)00038-8
[55] Blankertz B, Dornhege G, Krauledat M, Müller KR, Kunzmann V, Losch F, et al. The Berlin Brain-Computer Interface: EEG-based communication without subject training. IEEE Trans Neural Syst Rehabil Eng 2006; 14: 147- 52. http://dx.doi.org/10.1109/TNSRE.2006.875557
[56] Guger C, Ramoser H, Pfurtscheller G. Real-time EEG analysis with subject specific spatial patterns for a brain computer interface (BCI). IEEE Trans Rehabil Eng 2000; 8: 447-56. http://dx.doi.org/10.1109/86.895947
[57] Kübler A, Nijboer F, Mellinger J, Vaughan TM, Pawelzik H, Schalk G, et al. Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology 2005; 64: 1775-7. http://dx.doi.org/10.1212/01.WNL.0000158616.43002.6D
[58] Piccione F, Giorgi F, Tonin P, Priftis K, Giove S, Silvoni S, et al. P300-based brain-computer interface: Reliability and performance in healthy and paralysed participants. Clin Neurophysiol 2006; 117: 531-7. http://dx.doi.org/10.1016/j.clinph.2005.07.024
[59] Hoffmann U, Vesin JM, Ebrahimi T, Diserens K. An efficient P300-based brain-computer interface for disabled subjects. J Neurosci Methods 2008; 167: 115-25. http://dx.doi.org/10.1016/j.jneumeth.2007.03.005
[60] Donchin E, Spencer KM, Wijesinghe R. The mental prosthesis: Assessing the speed of a P300-based braincomputer interface. IEEE Trans Rehab Eng 2000; 8: 174-9. http://dx.doi.org/10.1109/86.847808
[61] Treder MS, Blankertz B. (C)overt attention and visual speller design in an ERP-based brain-computer interface. Behav Brain Funct 2010; 6: 28. http://dx.doi.org/10.1186/1744-9081-6-28
[62] Bakardjian H, Tanaka T, Cichocki A. Optimization of SSVEP brain responses with application to eight-command BrainComputer Interface. Neurosci Lett 2010; 469: 34-8. http://dx.doi.org/10.1016/j.neulet.2009.11.039
[63] Krusienski DJ, Allison BZ. Harmonic coupling of steady-state visual evoked potentials. Conf Proc IEEE Eng Med Biol Soc 2008; 2008: 5037-40.
[64] Kelly SP, Lalor EC, Reilly RB, Foxe JJ. Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication. IEEE Trans Neural Syst Rehab Eng 2005; 13: 172-8. http://dx.doi.org/10.1109/TNSRE.2005.847369
[65] Zhang D, Maye A, Gao X, Hong B, Engel AK, Gao S. An independent brain-computer interface using covert nonspatial visual selective attention. J Neural Eng 2010; 7: 16010. http://dx.doi.org/10.1088/1741-2560/7/1/016010
[66] Allison BZ, McFarland DJ, Schalk G, Zheng SD, Jackson MM, Wolpaw JR. Towards an independent brain-computer interface using steady state visual evoked potentials. Clin Neurophysiol 2008; 119: 399-408. http://dx.doi.org/10.1016/j.clinph.2007.09.121
[67] Daly JJ, Wolpaw JR. Brain-computer inter-faces in neurological rehabilitation. Lancet Neurol 2008; 7: 1032-43. http://dx.doi.org/10.1016/S1474-4422(08)70223-0
[68] Kübler A, Kotchoubey B, Kaiser J, Wolpaw J, Birbaumer N. Brain-computer communication: unlocking the locked-in. Psychol Bull 2001; 127: 358-75. http://dx.doi.org/10.1037/0033-2909.127.3.358
[69] Mak JN, Wolpaw JR. clinical applications of brain-computer interfaces: Current state and future prospects. IEEE Rev Biomed Eng 2009; 2: 187-99. http://dx.doi.org/10.1109/RBME.2009.2035356
[70] Nijboer F, Furdea A, Gunst I, Mellinger J, McFarland DJ, Birbaumer N, et al. An auditory brain-computer interface (BCI). J Neurosci Methods 2008; 167: 43-50. http://dx.doi.org/10.1016/j.jneumeth.2007.02.009
[71] Allison BZ, Wolpaw EW, Wolpaw JR. Brain computer interface systems: progress and prospects. Expert Rev Med Devices 2007; 4: 463-74. http://dx.doi.org/10.1586/17434440.4.4.463
[72] Birbaumer N. Brain-computer interface research: coming of age. Clin Neurophysiol 2006; 117: 479-83. http://dx.doi.org/10.1016/j.clinph.2005.11.002
[73] McFarland DJ, Sarnacki WA, Vaughan TM, Wolpaw JR. Brain-computer interface (BCI) operation: signal and noise during early training sessions. Clin Neurophysiol 2005; 116: 56-62. http://dx.doi.org/10.1016/j.clinph.2004.07.004
[74] Pfurtscheller G, Graimann B, Neuper C. EEG-based braincomputer interface systems and signal processing. In: MetinAkay, eds. Encyclopedia of Biomedical Engineering. New Jersey: John Wiley & Sons, 2006; 1156-66. http://dx.doi.org/10.1016/S0304-3940(03)00947-9
[75] Pfurtscheller G, Müller GR, Pfurtscheller J, Gerner HJ, Rupp R. Thought-control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci Lett 2003; 351: 33-6.
[76] Birch GE, Bozorgzadeh Z, Mason SG. Initial on-line evaluations of the LF-ASD brain-computer interface with able-bodied and spinal-cord subjects using imagined voluntary motor potentials. IEEE Trans Neural Syst Rehabil Eng 2002; 10: 219-24. http://dx.doi.org/10.1109/TNSRE.2002.806839
[77] Millan J del R, Mourino J. Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project. IEEE Trans Neural Syst Rehabil Eng 2003; 11: 159- 61. http://dx.doi.org/10.1109/TNSRE.2003.814435
[78] Scherer R, Müller GR, Neuper C, Graimann B, Pfurtscheller G. An asynchronously controlled EEG-based virtual keyboard: Improvement of the spelling rate. IEEE Trans Biomed Eng 2004; 51: 979-84. http://dx.doi.org/10.1109/TBME.2004.827062
[79] Pfurtscheller G, Leeb R, Keinrath C, Fried-man D, Neuper C, Guger C, et al. Walking from thought. Brain Res 2006; 1071: 145-52. http://dx.doi.org/10.1016/j.brainres.2005.11.083
[80] Allison BZ, Brunner C, Kaiser V, Müller-Putz GR, Neuper C, Pfurtscheller G. Toward a hybrid brain-computer interface based on imagined movement and visual attention. J Neural Eng 2010; 7: 26007. http://dx.doi.org/10.1088/1741-2560/7/2/026007
[81] Pfurtscheller G, Allison BZ, Brunner C, Bauernfeind G, SolisEscalante T, Scherer R, et al. The hybrid BCI. Front Neurosci 2010; 4: 42.
[82] Vaughan TM, McFarland DJ, Schalk G, Sarnacki WA, Krusienski DJ, Sellers EW, et al. The Wadsworth BCI Research and Development Program: at home with BCI. IEEE Trans Neural Syst Rehabil Eng 2006; 14: 229-33. http://dx.doi.org/10.1109/TNSRE.2006.875577
[83] Schalk G, Miller KJ, Anderson NR, Wilson JA, Smyth MD, Ojemann JG, et al. Two-dimensional movement control using electro-corticographic signals in humans. J Neural Eng 2008; 5: 75-84. http://dx.doi.org/10.1088/1741-2560/5/1/008
[84] Muller KR, Tangermann M, Dornhege G, Krauledat M, Curio G, Blankertz B. Machine learning for real-time single-trial EEG-analysis: From brain-computer interfacing to mental state monitoring. J Neurosci Methods 2008; 167: 82-90. http://dx.doi.org/10.1016/j.jneumeth.2007.09.022
[85] Kübler A, Neumann N, Kaiser J, Kotchoubey B, Hinterberger T, Birbaumer N. Brain-computer communication: Selfregulation of slow cortical potentials for verbal communication. Arch Phys Med Rehabil 2001b; 82: 1533-9. http://dx.doi.org/10.1053/apmr.2001.26621
[86] Hinterberger T, Nijboer F, Kübler A, Matuz T, Furdea A, Mochty U, et al. Brain- computer interfaces for communication in paralysis: A clinical experimental approach. In: Dornhege G, Millán J del R, Hinterberger T, McFarland DJ, Müller Klaus-Robert, Eds. Toward braincomputer interfacing. Cambridge, MA: The MIT Press, 2007; pp. 43-64.
[87] Ang KK, Guan C, Chua KS, Ang BT, KuahC, Wang C, et al. A clinical study of motor imagery-based brain-computer interface for upper limb robotic rehabilitation. Conf Proc IEEE Eng Med Biol Soc 2009; 2009: 5981-4.
[88] Broetz D, Braun C, Weber C, Soekadar SR, Caria A, Birbaumer N. Combination of brain computer interface training and goal-directed physical therapy in chronic stroke: a case report. Neurorehabil Neural Repair 2010; 24: 674-9. http://dx.doi.org/10.1177/1545968310368683
[89] Kotchoubey B, Strehl U, Uhlmann C, Holzapfel S, König M, FröscherW, et al. Modification of slow cortical potentials in patients with refractory epilepsy: a controlled outcome study. Epilepsia 2001; 42: 406-16. http://dx.doi.org/10.1046/j.1528-1157.2001.22200.x
[90] Rockstroh B, Elbert T, Birbaumer N, Wolf P, Düchting-Röth A, Reker M, et al. Cortical self-regulation in patients with epilepsies. Epilepsy Res 1993; 14: 63-72. http://dx.doi.org/10.1016/0920-1211(93)90075-I
[91] Fuchs T, Birbaumer N, Lutzenberger W, Gruzelier JH, Kaiser J. Neurofeedback training for attention-deficit/hyperactivitydisorder in children: a comparison with methylphenidate. Appl Psychophysiol Bio-feedback 2003; 28: 1-12. http://dx.doi.org/10.1023/A:1022353731579
[92] Strehl U, Leins U, Goth G, Klinger C, Hinterberger T, Birbaumer N. Self-regulation of slow cortical potentials – a new treatment for children with ADHD. Pediatrics 2006; 118: 1530-40. http://dx.doi.org/10.1542/peds.2005-2478

Downloads

Published

2013-02-02

Issue

Section

Articles