Review of Robot-Assisted Gait Rehabilitation after Stroke
DOI:
https://doi.org/10.12970/2308-8354.2013.01.01.1Keywords:
Abstract
Regarding classical rehabilitation techniques, there is insufficient evidence to state that a particular approach is more effective in promoting gait recovery than robotic devices. More constraining devices, such as Lokomat, could be helpful at the beginning of rehabilitation and with more severely affected patients, whereas end-effector devices and then treadmill gait training with body weight support, could be more effective in more advanced stages of rehabilitation and/or in less affected patients. Robotic devices need further research to show their suitability for walking training and their effects on over-ground gait. Keywords: Robotic device, Gait, Rehabilitation, Stroke.References
[1] Organization, World Health (2008). The global burden of disease: 2004 update. ([Online-Ausg.] ed.). Geneva, Switzerland: World Health Organization. ISBN 9789241563710.
[2] Sposato LA, Saposnik G. Gross domestic product and health expenditure associated with incidence, 30-day fatality, and age at stroke onset: a systematic review. Stroke 2012; 43: 170-7. http://dx.doi.org/10.1161/STROKEAHA.111.632158
[3] Schaechter JD. Motor rehabilitation and brain plasticity after hemiparetic stroke. Progr Neurobiol 2004; 73: 61-72. http://dx.doi.org/10.1016/j.pneurobio.2004.04.001
[4] Flansbjer UB, Holmbäck AM, Downham D, Patten C, Lexell J. Reliability of gait performance tests in men and women with hemiparesis after stroke. J Rehabilitation Med 2005; 37: 75-82. http://dx.doi.org/10.1080/16501970410017215
[5] Dohring ME, Daly JJ. Automatic Synchronization of Functional Electrical Stimulation and Robotic Assisted Treadmill Training. IEEE Trans Neural Syst Rehabilitation Eng 2008; 16: 310-13. http://dx.doi.org/10.1109/TNSRE.2008.920081
[6] Page SJ, Hill V, White S. Portable upper extremity robotics is as efficacious as upper extremity rehabilitative therapy: a randomized controlled pilot trial. Clin Rehabil 2012; [Epub ahead of print]. http://dx.doi.org/10.1177/0269215512464795
[7] Mirelman A, Bonato P, Deutsch JE. Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke 2009; 40: 169-74. http://dx.doi.org/10.1161/STROKEAHA.108.516328
[8] Fasoli SE, Krebs HI, Stein J, Frontera WR, Hughes R, Hogan N. Robotic therapy for chronic motor impairments after stroke: follow-up results1. Archiv Phys Med Rehabilitation 2004; 85: 1106-11. http://dx.doi.org/10.1016/j.apmr.2003.11.028
[9] Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet 2011; 377: 1693-702. http://dx.doi.org/10.1016/S0140-6736(11)60325-5
[10] Kwakkel G, Wagenaar RC, Twisk JW, Lankhorst GJ, Koetsier JC. Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial. Lancet 1999; 354: 191-96. http://dx.doi.org/10.1016/S0140-6736(98)09477-X
[11] Duschau-Wicke A, von Zitzewitz J, Caprez A, Lunenburger L, Riener R. Path Control: A Method for Patient-Cooperative Robot-Aided Gait Rehabilitation. Neural Systems: and Rehabilitation Engineering, IEEE Transactions on 2010; 18: 38-48.
[12] Kim SH, Banala SK, Brackbill EA, Agrawal SK, Krishnamoorthy V, Scholz JP. Robot-assisted modifications of gait in healthy individuals. Exper Brain Res 2010; 202: 809-24. http://dx.doi.org/10.1007/s00221-010-2187-5
[13] Peshkin M, Brown DA, Santos-Munné JJ, Makhlin A, Lewis E, Colgate JE, et al. Kine Assist: A robotic overground gaitand balance training device. Rehabilitation Robotics, 2005. ICORR 2005. 9th International Conference on 2005; 241- 246.
[14] Riener R, Lunenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V. Patient-cooperative strategies for robotaided treadmill training: first experimental results. Neural Systems and Rehabilitation Engineering, IEEE Transactions on 2005; 13: 380-94.
[15] McCain KJ, Polio FE, Baum BS, Coleman SC, Baker S, Smith PS. Locomotor treadmill training with partial bodyweight support before overground gait in adults with acute stroke: a pilot study. Archiv Phys Med Rehabilitation 2008; 89: 684-91. http://dx.doi.org/10.1016/j.apmr.2007.09.050
[16] Hesse S, Uhlenbrock D, Werner C, Bardeleben A. A mechanized gait trainer for restoring gait in nonambulatory subjects. Archiv Phys Med Rehabilitation 2000; 81: 1158-61. http://dx.doi.org/10.1053/apmr.2000.6280
[17] Meyer-Heim A, Borggraefe I, Ammann-Reiffer C, Berweck S, Sennhauser FH, Colombo G, et al. Feasibility of roboticassisted locomotor training in children with central gait impairment. Dev Med Child Neurol 2007; 49: 900-6. http://dx.doi.org/10.1111/j.1469-8749.2007.00900.x
[18] Moseley AM, Stark A, Cameron ID, Pollock A. Treadmill training and body weight support for walking after stroke. Stroke 2003; 34: 3006. http://dx.doi.org/10.1161/01.STR.0000102415.43108.66
[19] Pohl M, Werner C, Holzgraefe M, Kroczek G, Wingendorf I, Hoölig G, et al. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin Rehabilitation 2007; 21: 17-27. http://dx.doi.org/10.1177/0269215506071281
[20] Duncan PW, Propst M, Nelson SG. Reliability of the FuglMeyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Therapy 1983; 63: 1606-10.
[21] Barbeau H, Visintin M. Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects. Archiv Phys Med Rehabilitation 2003; 84: 1458-65. http://dx.doi.org/10.1016/S0003-9993(03)00361-7
[22] Bogey R, Hornby GT. Gait training strategies utilized in post stroke rehabilitation: are we really making a difference? Topics Stroke Rehabilitation 2007; 14: 1-8. http://dx.doi.org/10.1310/tsr1406-1
[23] Mehrholz J, Werner C, Kugler J, Pohl M. Electromechanicalassisted training for walking after stroke. Cochrane Database Syst Rev 2007; (4): CD006185.
[24] Mayr A, Kofler M, Quirbach E, Matzak H, Fröhlich K, Saltuari L. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabilitation Neural Repair 2007; 21: 307-14. http://dx.doi.org/10.1177/1545968307300697
[25] Luft AR, Macko RF, Forrester LW, Villagra F, Ivey F, Sorkin JD, et al. Treadmill exercise activates subcortical neural networks and improves walking after stroke: a randomized controlled trial. Stroke 2008; 39: 3341-50. http://dx.doi.org/10.1161/STROKEAHA.108.527531
[26] Visintin M, Barbeau H, Korner-Bitensky N, Mayo NE. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke 1998; 29: 1122-28. http://dx.doi.org/10.1161/01.STR.29.6.1122
[27] Monaco V, Galardi G, Jung JH, Bagnato S, Boccagni C, Micera S. A new robotic platform for gait rehabilitation of bedridden stroke patients. Rehabilitation Robotics, 2009. ICORR 2009. IEEE International Conference on 2009; 383- 388.
[28] Skvortsova VI, Ivanova GE, Kovrazhkina EA, Rumiantseva NA, Staritsyn AN, Suvorov AIu, et al. The use of a robotassisted Gait Trainer GT1 in patients in the acute period of cerebral stroke: a pilot study. Zh Nevrol Psikhiatr Im S S Korsakova. 2008; Suppl 23: 28-34. [Article in Russian].
[29] Forrester LW, Roy A, Krebs HI, Macko RF. Ankle Training With a Robotic Device Improves Hemiparetic Gait After a Stroke. Neurorehabilitation Neural Repair 2010; 369-77.
[30] Song R, Tong K, Hu X. Assistive control system using continuous myoelectric signal in robot-aided arm training for patients after stroke. Neural Systems and Rehabilitation Engineering, IEEE Transactions on 2008; 16: 371-79.
[31] Ueda J, Ming D, Krishnamoorthy V, Shinohara M, Ogasawara T. Individual Muscle Control Using an Exoskeleton Robot for Muscle Function Testing. Neural Systems and Rehabilitation Engineering, IEEE Transactions on 2010; 18: 339-50.
[32] Hyngstrom A, Onushko T, Chua M, Schmit BD. Abnormal Volitional Hip Torque Phasing and Hip Impairments in Gait Post Stroke. J Neurophysiol 2010; 103: 1557-68. http://dx.doi.org/10.1152/jn.00528.2009
[33] Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR. Enhanced gait-related improvements after therapist-versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke 2008; 39: 1786-92. http://dx.doi.org/10.1161/STROKEAHA.107.504779
[34] Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabilitation Neural Repair 2009; 23: 5-13. http://dx.doi.org/10.1177/1545968308326632
[35] Dobkin BH. Strategies for stroke rehabilitation. Lancet Neurol 2004; 3: 528-36. http://dx.doi.org/10.1016/S1474-4422(04)00851-8
[36] Iosa M, Morone G, Bragoni M, De Angelis D, Venturiero V, Coiro P, et al. Driving electromechanically assisted Gait Trainer for people with stroke. J Rehabilitation Res Dev 2011; 48: 135-46. http://dx.doi.org/10.1682/JRRD.2010.04.0069
[37] Morone G, Bragoni M, Iosa M, De Angelis D, Venturiero V, Coiro P, et al. Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke. Neurorehabil Neural Repair 2011; 25: 636-44. http://dx.doi.org/10.1177/1545968311401034
[38] Hermano K, Bruce V, Neville H. A working model of stroke recovery from rehabilitation robotics practitioners. J Neuroeng Rehabil 2009; 6: 6. http://dx.doi.org/10.1186/1743-0003-6-6
[39] Pollock A, Baer G, Langhorne P, Pomeroy V. Physiotherapy treatment approaches for the recovery of postural control and lower limb function following stroke: a systematic review. Clin Rehabil 2007; 21: 395-10. http://dx.doi.org/10.1177/0269215507073438
[40] Hesse S, Bertelt C, Jahnke MT, Schaffrin A, Baake P, Malezic M, et al. Treadmill training with partial body weight support compared with physiotherapy in nonambulatory hemiparetic patients. Stroke 1995; 26: 976-81. http://dx.doi.org/10.1161/01.STR.26.6.976
[41] Bogataj U, Gros N, Kljajic M, Acimovic R, Malezic M. The rehabilitation of gait in patients with hemiplegia: a comparison between conventional therapy and multichannel functional electrical stimulation therapy. Phys Ther 1995; 75: 490-502.
[42] Bogataj U, Gros N, Malezic M, Kelih B, Kljajic M, Acimovic R. Restoration of gait during two to three weeks of therapy with multichannel electrical stimulation. Phys Ther 1989; 69: 319.
[43] Bogataj U, Gros N, Kljajic M, Acimovic-Janezic R. Enhanced rehabilitation of gait after stroke: a case report of atherapeutic approach using multichannel functional electrical stimulation. Rehabilitation Engineering, IEEE Transactions on 2002; 5: 221-32.
[44] Kottink AI, Oostendorp LJ, Buurke JH, Nene AV, Hermens HJ, IJzerman MJ. The orthotic effect of functional electrical stimulation on the improvement of walking in stroke patients with a dropped foot: a systematic review. Artificial Organs 2004; 28: 577-86. http://dx.doi.org/10.1111/j.1525-1594.2004.07310.x
[45] Teasell RW, Foley NC, Bhogal SK, Speechley MR. An evidence-based review of stroke rehabilitation. Topics Stroke Rehabilitation 2002; 10: 29-58. http://dx.doi.org/10.1310/8YNA-1YHK-YMHB-XTE1
[46] Wolpaw JR, McFarland DJ. Multichannel EEG-based braincomputer communication. Electroencephalogr Clin Neurophysiol 1994; 90: 444-49. http://dx.doi.org/10.1016/0013-4694(94)90135-X
[47] Yan T, Hui-Chan CW, Li LS. Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke: a randomized placebo-controlled trial. Stroke 2005; 36: 80-85. http://dx.doi.org/10.1161/01.STR.0000149623.24906.63
[48] Page SJ, Levine P, Leonard A. Mental practice in chronic stroke: results of a randomized, placebo-controlled trial. Stroke 2007; 38: 1293-97. http://dx.doi.org/10.1161/01.STR.0000260205.67348.2b
[49] Daly JJ, Cheng R, Rogers J, Litinas K, Hrovat K, Dohring M. Feasibility of a new application of noninvasive brain computer interface (BCI): a case study of training for recovery of volitional motor control after stroke. J Neurologic Phys Ther 2009; 33: 203-11.
[50] Tan HG, Kong KH, Shee CY, Wang CC, Guan CT, Ang WT. Post-acute stroke patients use brain-computer interface to activate electrical stimulation. Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE 2010; 4234-4237.
[51] Ang KK, Guan C, Chua SG, Ang BT, Kuah C, Wang C, et al. A clinical study of motor imagery-based brain-computer interface for upper limb robotic rehabilitation. Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE 2009; 5981-5984.
[52] Broetz D, Braun C, Weber C, Soekadar SR, Caria A, Birbaumer N. Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report. Neurorehabilitation Neural Repair 2010; 24: 674. http://dx.doi.org/10.1177/1545968310368683
[53] Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ. Probability of regaining dexterity in the flaccid upper limb. Impact of severity of paresis and time since onset in acute stroke. Stroke 2003; 2181-86. http://dx.doi.org/10.1161/01.STR.0000087172.16305.CD
[54] Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, et al. Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage 2001; 14: 1186-92. http://dx.doi.org/10.1006/nimg.2001.0905
[55] Suzuki M, Miyai I, Ono T, Oda I, Konishi I, Kochiyama T, et al. Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study. Neuroimage 2004; 23: 1020-26. http://dx.doi.org/10.1016/j.neuroimage.2004.07.002
[56] Mihara M, Miyai I, Hatakenaka M, Kubota K, Sakoda S. Role of the prefrontal cortex in human balance control. Neuroimage 2008; 43: 329-36. http://dx.doi.org/10.1016/j.neuroimage.2008.07.029
[57] Mihara M, Miyai I, Hatakenaka M, Kubota K, Sakoda S. Sustained prefrontal activation during ataxic gait: A compensatory mechanism for ataxic stroke? Neuroimage 2007; 37: 1338-45. http://dx.doi.org/10.1016/j.neuroimage.2007.06.014