Traumatic Brain-and-Spine Injury Mechanics Supported by the Crash Simulator Toolbox 

Authors

  • Vladimir G. Ivancevic Joint and Operations Analysis Division, Defence Science & Technology Organisation, Australia
  • Shady Mohamed Centre for Intelligent Systems Research, Deakin University, Australia

DOI:

https://doi.org/10.12970/2308-8354.2014.02.02

Keywords:

 Brain-Computer Interface, independent component analysis, equivalent current dipole source localization, movement imagery.

Abstract

 Recently, the first author has proposed a new coupled-loading-rate hypothesis as a unique cause of both brain and spinal injuries, which states that they are both caused by a Euclidean jolt, an impulsive loading that strikes head and spine (or, any other part of the human body)- in several coupled degrees-of-freedom simultaneously. Injury never happens in a single direction only, nor is it ever caused by a static force. It is always an impulsive translational plus rotational force. The Euclidean jolt causes two basic forms of brain, spine and other musculo-skeletal injuries: (i) localized translational dislocations; and (ii) localized rotational disclinations. In the present paper, we first review this unique mechanics of a general human mechanical neuro-musculo-skeletal injury, and then describe how it can be predicted and controlled by the new crash simulator toolbox. This rigorous Matlab toolbox has been developed using an existing third-party toolbox DiffMan, for accurately solving differential equations on smooth manifolds and mechanical Lie groups. The present crash simulator toolbox performs prediction and control of brain and spinal injuries within the framework of the Euclidean group SE(3) of general rigid body motions. Keywords: Traumatic brain injury, spinal injury, biomechanics, simulation, Matlab toolbox.

References


[1] Ivancevic VG. New mechanics of traumatic brain injury. Cogn Neurodyn 2009; 3: 281-293. http://dx.doi.org/10.1007/s11571-008-9070-0
[2] Ivancevic VG. New mechanics of spinal injury. IJAM 2009; 1(2): 387-401.
[3] Ivancevic VG. New mechanics of generic musculo-skeletal injury. BRL 2009; 4(3): 273-287
[4] Ivancevic VG. A unique cause of traumatic brain injury and all neuro-musculo-skeletal injuries. Brain Res J 2010; 3(2): 1935-2875.
[5] Ivancevic VG, Ivancevic TT. Natural Biodynamics. World Scientific, Series: Mathematical Biology, Singapore 2006.
[6] Ivancevic V, Ivancevic T. Human-Like Biomechanics. Springer, Dordrecht 2006.
[7] Ivancevic VG, Ivancevic TT. Geometrical Dynamics of Complex Systems: A Unified Modelling Approach to Physics Control Biomechanics Neurodynamics and Psycho-SocioEconomical Dynamics. Springer, Dordrecht 2006. http://dx.doi.org/10.1007/1-4020-4545-X
[8] Chen Z, Cao J, Cao Y, Zhang Y, Gu F, Zhu G, Hong Z, Wang B, Cichocki A. An empirical EEG analysis in brain death diagnosis for adults. Cogn Neurodyn 2008; 2: 257-271. http://dx.doi.org/10.1007/s11571-008-9047-z
[9] NIH. Traumatic Brain Injury: Hope Through Research. NIH Publ. No. 02-2478. Nat Inst Health (Feb. 2002).
[10] Sokoloff L. The physiological and biochemical bases of functional brain imaging. Cogn Neurodyn 2008; 2: 1-5. http://dx.doi.org/10.1007/s11571-007-9033-x
[11] Maier SE, Hardy CJ, Jolesz FA. Brain and cerebrospinal fluid motion: real-time quantification with M_mode MR imaging. Radiology 1994; 193(2): 477-483.
[12] Loth F, Yardimci MA, Alperin N. Hydrodynamic modelling of cerebrospinal fluid motion within the spinal cavity. J Biomech Eng 2001; 123(1): 71-79.
[13] Ivancevic V, Ivancevic T. Applied Differential Geometry: A Modern Introduction. World Scientific, Singapore 2007.
[14] Ivancevic V. Symplectic Rotational Geometry in Human Biomechanics. SIAM Rev 2004; 46(3): 455-474. http://dx.doi.org/10.1137/S003614450341313X
[15] Park J, Chung W-K. Geometric Integration on Euclidean Group With Application to Articulated Multibody Systems. IEEE Trans Rob 2005; 21(5): 850-863. http://dx.doi.org/10.1109/TRO.2005.852253
[16] Edelen DGB. A four-dimensional formulation of defect dynamics and some of its consequences. Int J Eng Sci 1980; 18: 1095. http://dx.doi.org/10.1016/0020-7225(80)90112-3
[17] Kadic A, Edelen DGB. A Gauge theory of Dislocations and Disclinations. Springer, New York 1983. http://dx.doi.org/10.1007/3-540-11977-9
[18] McElhaney JH, Myers BS. Biomechanical Aspects of Cervical Trauma, in: Nahum AM, Melvin JW, Eds. Accidental injury: Biomechanics and Prevention, Springer, New York 1993. http://dx.doi.org/10.1007/978-1-4757-2264-2_14
[19] Whiting WC, Zernicke RF. Biomechanics of Musculoskeletal Injury. Human Kinetics, Champaign, IL 1998.
[20] Waddell G. The Back Pain Revolution. Churchill Livingstone, Edinburgh 1998.
[21] Rannou F, Corvol M, Revel M, Poiraudeau S. Disk degeneration and disk herniation: the contribution of mechanical stress. Joint, Bone, Spine: Revue du Rheumatisme 2001; 68(6): 543-546.
[22] Seidel H, Griffin MJ. Modelling the response of the spinal system to whole-body vibration and repeated shock. Clin Biomech 2001; 16(1): S3-7. http://dx.doi.org/10.1016/S0268-0033(00)00095-4
[23] Granata KP, Marras WS. An EMG-assisted model of trunk loading during free-dynamic lifting. J Biomech 1995; 28(11): 1309-17. http://dx.doi.org/10.1016/0021-9290(95)00003-Z
[24] Kumar S, Narayan Y. Torque and EMG in rotation extension of the torso from pre-rotated and flexed postures. Clin Biomech 2006; 21(9): 920-931. http://dx.doi.org/10.1016/j.clinbiomech.2006.04.017
[25] Reiser RF, Wickel EE, Menzer HH. Lumbar mechanics of floor to knuckle height lifting on sloped surfaces. Int J Ind Erg 2008; 38(1): 47-55. http://dx.doi.org/10.1016/j.ergon.2007.08.002
[26] Ivancevic VG. Nonlinear complexity of human biodynamics engine. Nonlin Dynamics 2010; 61(1-2): 123-139. http://dx.doi.org/10.1007/s11071-009-9636-3
[27] Engø K, Marthinsen A, Munthe-Kaas HZ. DiffMan- an object oriented MATLAB toolbox for solving differential equations on manifolds, Tech. Rep. 164, Dep. Informatics, Univ. Bergen, Norway 1999.
[28] Engø K, Marthinsen A, Munthe-Kaas HZ. DiffMan User’s Guide, Version 1.6, Tech. Rep. 166, Dep. Informatics, Univ. Bergen, Norway 1999.
[29] Munthe-Kaas HZ. Lie-Butcher theory for Runge-Kutta methods. BIT 1995; 35(4): 572-587. http://dx.doi.org/10.1007/BF01739828
[30] Munthe-Kaas HZ. Runge-Kutta methods on Lie groups. BIT 1998; 38(1): 92-111. http://dx.doi.org/10.1007/BF02510919
[31] Munthe-Kaas HZ. High order Runge-Kutta methods on manifolds. Appl Numer Math 1999; 29: 115-127. http://dx.doi.org/10.1016/S0168-9274(98)00030-0
[32] Iserles A, Munthe-Kaas HZ, Nørsett SP, Zanna A. Lie-group methods. Acta Numer 2005; 9: 1-148.

Downloads

Published

2014-04-05

Issue

Section

Articles