Robotic-Assisted Gait Training Therapies for Pediatric Cerebral Palsy: A Review 

Authors

  • James D. Dolbow School of Mathematics and Sciences, Lincoln Memorial University, Harrogate, Tennessee
  • Candyce Mehler
  • Sandra L. Stevens Department of Health and Human Performance, Middle Tennessee State University, Murfreesboro, Tennessee
  • Jaime Hinojosa School of Mathematics and Sciences, Lincoln Memorial University, Harrogate, Tennessee

DOI:

https://doi.org/10.12970/2308-8354.2016.04.02

Abstract

Abstract Background: Children and adolescents with CP experience many types of disability and functional impairment that effect the gait cycle. New robotic gait therapies adapted to pediatric patients provide a safe, highly repetitive, and task-specific therapeutic venue for the rehabilitation and elicitation of a more natural walking gait. While the use of robotic-assisted gait training (RAGT) is a relatively novel therapeutic approach to gait therapy, several studies have examined the efficacy of this therapeutic modality in pediatric patients with CP. Purpose: The purpose of this review is to examine the trends in the therapeutic efficacy of utilizing RAGT therapy as a gait restorative modality for children with CP. Results: The present studies show that RAGT therapy may provide multiple therapeutic benefits to children with CP, including statistically significant improvements in gross motor function and multiple gait characteristics. Also, RAGT therapy may be a safe and favorable complement to current physiotherapy regimens. Conclusion: As various degrees of functional improvement are a noticeable trend among all presented studies, further study in this therapeutic technique is warranted, and implementation of similar therapeutic protocol may be valuable to a rehabilitation care plan. The highly repetitive and task-specific nature of RAGT may provide a valuable paradigm for children with CP whom have never learned a normal gait pattern.

References


[1] Rosenbaum P, Paneth N, Leviton A, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl 2007; 109: 8-14.
[2] Bax M, Goldstein M, Rosenbaum P, et al. Executive committee for the definition of cerebral palsy. Proposed definition and classification for cerebral palsy. Dev Med Child Neurol 2005; 47: 571-576. http://dx.doi.org/10.1017/S001216220500112X
[3] Kim SJ, Kwak EE, Park ES, et al. Differential effects of rhythmic auditory stimulation and neurodevelopement treatment/Bobath on gait patterns in adults with cerebral palsy: a randomized controlled trial. Clin Rehabil 2012; 26: 904-914. http://dx.doi.org/10.1177/0269215511434648
[4] Krageloh-Mann I, Cans C: Cerebral palsy update. Brain Dev 2009; 31: 537-544. http://dx.doi.org/10.1016/j.braindev.2009.03.009
[5] Chagas PS, Mancini MC, Barbosa A, et al. Analysis of interventions used for gait promotion in children with cerebral palsy: a systematic review of the literature. Rev Bras Fisioter 2004; 8: 155-163.
[6] O’Shea TM. Diagnosis, treatment and prevention of cerebral palsy. Clin Obest Gynecol 2008; 51: 816-828. http://dx.doi.org/10.1097/GRF.0b013e3181870ba7
[7] Eagleton M, Iams A, McDowell J, et al. the effects of strength training on gait in adolescents with cerebral palsy. Pediatr Phys Ter 2004; 16: 22-30. http://dx.doi.org/10.1097/01.PEP.0000116781.00415.8E
[8] Massaad F, Dierick F, van den Hecke A, et al. Influence of gait pattern on body’s centre of mass displacement in children with cerebral palsy. Dev Med Child Neurol 2004; 46: 674-680. http://dx.doi.org/10.1111/j.1469-8749.2004.tb00980.x
[9] Damiano D, Alter KE, Chambers H. New clinical and research trends in lower extremity management for ambulatory children with cerebral palsy. Phys Med Rehabil Clin N Am 2009; 20: 469-491. http://dx.doi.org/10.1016/j.pmr.2009.04.005
[10] Berker AN, Yalcin MS. Cerebral palsy: Orthopedic aspects and rehabilitation. Pediatr Clin North Am 2008; 55: 1209- 1225. http://dx.doi.org/10.1016/j.pcl.2008.07.011
[11] Majnemer A, Shevell M, Law M, et al. Level of motivation in mastering challenging tasks in children with cerebral palsy. Dev Med Child Neurol 2010; 52: 1120-1126. http://dx.doi.org/10.1111/j.1469-8749.2010.03732.x
[12] Messier J, Ferland F, Majnemer A. Play behavior of school age children with intellectual disability: Their capabilities, interests and attitude. J Dev Phys Disabil 2008; 20: 193-207. http://dx.doi.org/10.1007/s10882-007-9089-x
[13] Jennings KD, Connors RE, Stegman CE. Does a physical handicap alter the development of mastery motivation during the preschool years? J Am Acad Child Adolesc Psychiatry 1988; 27: 312-317. http://dx.doi.org/10.1097/00004583-198805000-00008
[14] Lepage C, Noreau L, Bernard PM. Association between characteristics of locomotion and accomplishment of life habits in children with cerebral palsy. Phys Ther 1998; 78: 458-469.
[15] Bjornson KF, Belza B, Kartin D, et al. Ambulatory physical activity performance in youth with cerebral palsy and youth who are developing typically. Phys Ther 2007; 87: 248-257. http://dx.doi.org/10.2522/ptj.20060157
[16] Salem Y, Godwin EM. Effects of task-oriented training on mobility function in children with cerebral palsy. NeuroRehabilitation 2009; 24: 307-313.
[17] Kwakkel G, van Peppen R, Wagenaar RC, et al. Effects of augmented exercise therapy time after stroke: a metaanalysis. Stroke 2004; 35: 2529-2539. http://dx.doi.org/10.1161/01.STR.0000143153.76460.7d
[18] Brutsch K, Koenig A, Zimmerli L, Merillat-Koeneke S, Riener R, Jancke L, van Hedel HJ, Meyer-Heim A. Virtual reality for enhancement of robot-assisted gait training is children with central gait disorders. J Rehabil Med 2011; 43(6): 493-9. http://dx.doi.org/10.2340/16501977-0802
[19] Fasoli SE, Labenheim B, Mast J, et al. New horizons for roboti-assisted therapy in pediatrics. Am J Phys Med Rehabil 2012; 91(11suppl 3): S280-S289. http://dx.doi.org/10.1097/PHM.0b013e31826bcff4
[20] Labruyere R, Gerver CN, Birrer-Brutsch K, Meyer-Heim A, van Hedel HJ. Requirements for and impact of a serious game for neuro-pediatric robot-assisted gait training. Res Dev Disabil 2013; 34(11): 3906-15. http://dx.doi.org/10.1016/j.ridd.2013.07.031
[21] DR, Gorgey AS, Recio AC, Stiens SA, Curry AC, Sadowsky CL, Gater DR, Martin R, McDonald JW. Activity-based restorative therapies after spinal cord injury: Inter-institutional concepts and perceptions. Aging Dis 2015; 6(4): 254-64. http://dx.doi.org/10.14336/AD.2014.1105
[22] Morawietz C, Moffat F. Effects of locomotor training after incomplete spinal cord injury: a systematic review. Arch Phys Med Rehabil 2013; 94(11): 2297-308. http://dx.doi.org/10.1016/j.apmr.2013.06.023
[23] Sullivan KJ, Knowlton BJ, Dobkin BH. Step training with body weight support: effect of treadmill speed and practice pradigms on postrtroke locomotor recovery. Arch Phys Med Rehabil 2002; 83: 683-691. http://dx.doi.org/10.1053/apmr.2002.32488
[24] McNevin NH, Coracci L, Schafer J. Gait in adolescent cerebral palsy: the effect of patial unweighting. Arch Phys Med Rehabil 2000; 81: 525-528. http://dx.doi.org/10.1053/mr.2000.4429
[25] Mehrholz J, Pohl M, Elsner B, Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev 2014.
[26] Campbell E, Coulter EH, Mattison PG, Miller L, McFadyen A, Paul L. Physiotherapy Rehabilitation for people with progressive multiple scherosis: a systematic review. Arch Phys Med Rehabil 2015. [Epub ahead of print].
[27] Swe NN, Sendhilnnathan S, van Den Berg M, Barr C. Over ground walking and body weight supported walking improve mobility equally in cerebral palsy: a randomized controlled trial. Clin Rehabil 2015; 29(11): 1108-16. http://dx.doi.org/10.1177/0269215514566249
[28] Damiano DL, DeJong SL. A systematic review of the effectiveness of treadmill training and body weight support in pediatric rehabilitation. J Neurol Phys Ther 2009; 33(1): 27-44. http://dx.doi.org/10.1097/NPT.0b013e31819800e2
[29] Grecco LA, Tomita SM Christovao TC, Pasini H, Sampaio LMM, Oliveira CS. Effects of treadmill gait training on static and functional balance in children with cerebral palsy: a randomized controlled trial. Braz J Phys Ther 2013; 17: 17- 23. http://dx.doi.org/10.1590/s1413-35552012005000066
[30] Su IY, Chung KK, Chow DH. Treadmill training with partial body weight support compared to conventional gait training for low-functioning children and adolescents with nonspastic cerebral palsy: a two-period crossover study. Prosthet Orthot Int 2013; 37(6): 445-53. http://dx.doi.org/10.1177/0309364613476532
[31] Willoughby KL, Dobb KJ, Shields N, Foley S. Efficacy of partial body weight-supported treadmill training compared with overground walking practice for children with cerebral palsy: a randomized controlled trial. Arch Phys Med Rehabil 2010; 91(3): 333-9. http://dx.doi.org/10.1016/j.apmr.2009.10.029
[32] Mutlu A, Krosschell K, Spira DG. Treadmill training with partial body-weight support in children with cerebral palsy: A systematic review. Dev Med Child Neurol 2009; 51: 268-275. http://dx.doi.org/10.1111/j.1469-8749.2008.03221.x
[33] Cho DY, Park SW, Lee MJ, Park DS, Kim EJ. Effects of robotic-assisted gait training on the balance and gait of chronic stroke patients: focus on dependent ambulators. J Phys Ther Sci 2015; 27(10): 3053-7. http://dx.doi.org/10.1589/jpts.27.3053
[34] Boninger ML, Wechsler LR, Stein J. Robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery for stroke: updates and advances. Am J Phys Med Rehabil 2014; 93(11 Suppl 3): S145-54.
[35] Sale P, Franceschini M, Waldner A, Hesse S. Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury. Eur J Phys Rehabil Med 2012; 48(1): 111-21.
[36] Swinnen E, Duerinch S, Baeyens JP, Meeusen R, Kerckhofs E. Effectiveness of robot-assisted gait training in person with spinal cord injury: a systematic review. J Rehabil Med 2010; 42(6): 520-6. http://dx.doi.org/10.2340/16501977-0538
[37] Winchester P, Querry R. Robotic othoses for body weightsupported treadmill training. Phys Med Rehabil Clin N Am 2006; 17: 159-72. http://dx.doi.org/10.1016/j.pmr.2005.10.008
[38] Meyer-Heim A, van Hedel HJ. Robot-assisted and computerenhanced therapies for children with cerebral palsy: current state and clinical implementation. Semin Pediatr Neurol 2013; 20(2): 139-45. http://dx.doi.org/10.1016/j.spen.2013.06.006
[39] Schmidt H, Werner C, Bernhardt R, Hesse S, Kruger J. Gait rehabilitation machines based on programmable footplates. J Neuroeng Rehabil 2007; 4: 2. http://dx.doi.org/10.1186/1743-0003-4-2
[40] Bartlett DJ, Palisano RJ. Physical therapists’ perceptions of factors influencing the acquisition of motor abilities of children with cerebral palsy: implications for clinical reasoning. Phys Ther 2002; 82(3): 237-48.
[41] Maclean N, Pound P. a critical review of the concept of patient motivation in the literature on physical rehabilitation. Soc Sci Med 2011; 50: 495-506.
[42] Maier IC, de Haller EB, Beer S, et al. Transfer of technology into clinical application. In: Dietz V, Nef T, Rymer Wz, Eds.: Neurorehabilitation Technology. London, Springer 2012; 303- 323. http://dx.doi.org/10.1007/978-1-4471-2277-7_17
[43] Stoller O, Waser M, Stammler L, Schuster C. Evaluation of robot-assisted gait training using integrated biofeedback in neurological disorder. Gait Posture 2012; 35(4): 595-600. http://dx.doi.org/10.1016/j.gaitpost.2011.11.031
[44] Lunenburger L, Colombo G, Riener R. Biofeedback for robotic gait rehabilitation. J Neuroeng Rehabil 2007; 23(4): 1. http://dx.doi.org/10.1186/1743-0003-4-1
[45] Meyer-Heim A, Borggrafe I, Ammann-Reiffer C, et al. Feasibility of robotic-assisted locomotor training in children with central gait impairment. Dev Med Child Neurol 2009; 49: 900-906. http://dx.doi.org/10.1111/j.1469-8749.2007.00900.x
[46] Meyer-Heim A, Ammann-Reiffer C, Schmartz A, et al. Improvement of walking abilities after robotic-assisted locomotion training in children with cerebral palsy. Arch Dis Child 2009; 94: 615-620. http://dx.doi.org/10.1136/adc.2008.145458
[47] Borggraefe I, Schaefer JS, Klaiber M, et al. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur J Paediatr Neurol 2010; 14: 496-502. http://dx.doi.org/10.1016/j.ejpn.2010.01.002
[48] Borggraef I, Kiwull L, Schaefer JS, et al. Sustainability of motor performance after robotic-assisted treadmill therapy in children: an open-nonrandomized baseline-treatment study. Eur J Phys Rehabil Med 2010; 46: 125-131.
[49] Borggraefe I, Meyer-Heim A, Kumar A, Schaefer JS, Berweck S, Heinin F. Improved gait parameters after roboticassisted locomotor treadmill therapy in a 6-year-old child with cerebral palsy. Mov Disord 2008; 23(2): 280-3. http://dx.doi.org/10.1002/mds.21802
[50] Smania N, Bonetti P, Gandolfi M, Cosentino A, Waldner A, Hesse S, Werner C, Bisoffi G, Geroin C, Munari D. Improved gait after repetitive locomotor training in children with cerebral palsy. Am J Phys Med Rehabil 2011; 90(2): 137-49. http://dx.doi.org/10.1097/PHM.0b013e318201741e
[51] Druzbicki M, Rusek W, Snela S, Dudek J, Szczepanik M, Zak E, Durmala J, Czernuszenko A, Bonikowski M, Sobota G. Functional effects of robotic-assisted locomotor treadmill therapy in children with cerebral palsy. J Rehabil Med 2013; 45(4): 358-63. http://dx.doi.org/10.2340/16501977-1114
[52] Druzbicki M, Rusek W, Szczepanik M, et al. Assessment of the impact of orthotic gait training on balance in children with cerebral palsy. Acta Bioeng Biomech 2010; 12: 53-58.
[53] Schmartz AC, Meyer-Heim AD, Muller R, et al. Measurement of muscle stiffness using robotic assisted gait orthosis in children with cerebral palsy: A proof of concept. Disabil Rehabil Assist Technol 2011; 6: 29-37. http://dx.doi.org/10.3109/17483107.2010.509884
[54] Borggraefe I, Klaiber M, Schuler T, et al. Safety of roboticassisted treadmill therapy in children and adolescents with gait impairment: A bi-centre survey. Dev Neurorehabil 2010; 13: 114-119. http://dx.doi.org/10.3109/17518420903321767
[55] Beveridge B, Feltracco D, Struyf J, Strauss E, Dang S, Phelan S, Wright FV, Gibson BE. “You gotta try it all”: Parents’ experience with robotic gait training for their children with cerebral palsy. Phys Occup Ther Pediatr 2015; 35(4): 327-41. http://dx.doi.org/10.3109/01942638.2014.990547
[56] Phelan SK, Gibson BE, Wright FV. What is it like to walk with the help of a robot? Children’s perspectives on robotic gait training technology. Disabil Rehabil 2015; 37(24): 2272-81. http://dx.doi.org/10.3109/09638288.2015.1019648
[57] Brutch K, Schuler T, Koenig A, Zimmerli L, Koeneke SM, Lunenburger L, Riener R, Jancke L, Meyer-Heim A. Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children. J Neuroeng Rehabil 2010; 7: 15. http://dx.doi.org/10.1186/1743-0003-7-15
[58] Schuler T, Brutsch K, Muller R, van Hedel HJ, Meyer-Heim A. Virtual realities as motivational tools for robotic assisted gait training in children: A surface electromyography study. Neuro Rehabilitation 2011; 28(4): 401-11.
[59] Hidler JM, Wall AE. Alterations in muscle activation during robotic-assisted walking. Clin Biomech (Bristal, Avon) 2005; 20(2): 184-93. http://dx.doi.org/10.1016/j.clinbiomech.2004.09.016
[60] Hidler J, Wisman W, Neckel N. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis. Clin Biomech (Bristol, Avon) 2008; 23(10): 1251-9. http://dx.doi.org/10.1016/j.clinbiomech.2008.08.004
[61] Stevens S, Holbrook E, Fuller D, Morgan D. Step activity patterns in typically-developing children and children with cerebral palsy: influence of age. Archives of Physical Medicine and Rehabilitation 2010; 91(12): 1891-1896. http://dx.doi.org/10.1016/j.apmr.2010.08.015

Downloads

Published

2016-03-06

Issue

Section

Articles