The Gait Restorative Effects of Robotic-Assisted Gait Training for Individuals with Neurodegenerative Disease: A Review
DOI:
https://doi.org/10.12970/2308-8354.2016.04.01Keywords:
Keyword: Eustachian tube function, tympanometry, deviated nasal septum, sinonasal polyposis.Abstract
Background: Neurodegenerative diseases and disorders present with a wide range of clinical and neuropathological symptoms caused by progressive neuronal dysfunction and eventual neuronal death. As individuals with neurodegenerative diseases experience gradual sensory, motor, and cognitive debilitation, the maintenance and recovery of a functional gait holds physiological, psychological, and financial importance. Developments in robotically-aided therapies are becoming more commonly used as a therapeutic tool for the improvement of gait characteristics and overall motor function for individuals with various gait impairments. To date, studies examining the effects of robotic-assisted gait training (RAGT) as treatment for neurodegenerative diseases, have only been performed in individuals with multiple sclerosis (MS), Parkinson’s disease (PD), and progressive supranuclear palsy (PSP). Purpose: The purpose of this review is to summarize and show trends to the efficacy of RAGT as a gait restorative and preservative modality for individuals with these neurodegenerative diseases including MS, PD, and PSP. Results: The overall trends reported by these reviewed studies show that RAGT may be an effective therapy for producing significant improvements in multiple gait characteristics including balance, walking speed, endurance, leg strength, gait safety, and motor function for individuals with neurodegenerative disease. Conclusion: The studies in this review suggest that RAGT therapies may be an effective substitute for, or addition to, present conventional therapies for individuals with neurodegenerative disease, however the long-term effects of this therapy are still not known for these individuals. Keywords: Robotic-assisted gait training, robotics. neurodegenerative disease, Parkinson’s disease, multiple sclerosis, progressive supranuclear palsy, gait.References
[1] Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006; 443: 787-795. http://dx.doi.org/10.1038/nature05292
[2] Prusiner SB. Neurodegenerative diseases and prions. N Engl J Med 2001; 344: 1516-1526. http://dx.doi.org/10.1056/NEJM200105173442006
[3] Massano J. Bhatia KP. Clinical approaches to Parkinson’s disease: features, diagnosis, and principles of management. Cold Spring Harb Perspect Med 2012; 2(6): A008870. http://dx.doi.org/10.1101/cshperspect.a008870
[4] Moseley AM, Stark A, Cameron ID, Pollock A. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev 2005; (4): CD))2840.
[5] Wessels M, Lucas C, Eriks I, de Groot S. Body weightsupported gait training for restoration for walking in people with an incomplete spinal cord injury: a systematic review. J Rehabil Med 2010; 42(6): 513-9. http://dx.doi.org/10.2340/16501977-0525
[6] Damiano DL, DeJong SL. A systematic review of the effectiveness of treadmill training and body weight support in pediatric rehabilitiation. J Neurol Phys Ther 2009; 33(1): 27- 44. http://dx.doi.org/10.1097/NPT.0b013e31819800e2
[7] Dolbow DR, Gorgey AS, Recio AC, Stiens SA, Curry AC, Sadowsky CL, Gater DR, Martin R, McDonald JW. Activitybased restorative therapies after spinal cord injury: Interinstitutional concepts and perceptions. Aging Dis 2015; 6(4): 254-64. http://dx.doi.org/10.14336/AD.2014.1105
[8] Freivogel S, Schmalohr D, Mehrholz J. Improved walking ability and reduced therapeutic stress with an electromechanical gait device. J Rehabil Med 2009; 41(9): 734-9. http://dx.doi.org/10.2340/16501977-0422
[9] Schmidt H, Werner C, Bernhardt R, Hesse S, Kruger J. Gait rehabilitation machines based on programmable footplates. J Neuroeng Rehabil 2007; 4: 2. http://dx.doi.org/10.1186/1743-0003-4-2
[10] Winchester P, Querry R. Robotic othoses for body weightsupported treadmill training. Phys Med Rehabil Clin N Am 2006; 17: 159-72. http://dx.doi.org/10.1016/j.pmr.2005.10.008
[11] Maier IC, de Haller EB, Beer SM, Borggraefe I, Campen K, Luft CA, Manoglou D, Meyer-Heim A, Schuler T, Wirz M. Transfer of technology into clinical application. In: Dietz V, Nef T, Rymer Wz (eds): Neurorehabilitation Technology. London, Springer, 303-323, 2012. http://dx.doi.org/10.1007/978-1-4471-2277-7_17
[12] Hidler JM, Wall AE. Alterations in muscle activation during robotic-assisted walking. Clin Biomech(Bristal, Avon) 2005; 20(2): 184-93. http://dx.doi.org/10.1016/j.clinbiomech.2004.09.016
[13] Hidler J, Wisman W, Neckel N. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis. Clin Biomech (Bristol, Avon) 2008; 23(10): 1251-9. http://dx.doi.org/10.1016/j.clinbiomech.2008.08.004
[14] Stevenson AJ, Mrachacz-Kersting N, van Asseldonk E, Turner DL, Spaich EG. Spinal plasticity in robot-mediated therapy for the lower limbs. J Neuroeng Rehabil 2015; 12: 81. http://dx.doi.org/10.1186/s12984-015-0073-x
[15] Meyer-Heim A, van Hedel HJ. Robot-assisted and computerenhanced therapies for children with cerebral palsy: current state and clinical implementation. Semin Pediatr Neurol 2013; 20(2): 139-45. http://dx.doi.org/10.1016/j.spen.2013.06.006
[16] Mehrholz J, Elsner B, Werner C, Kugler J, Pohl M. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev 2013; 7: CD006185.
[17] Esquenazi A, Lee S, Packel AT, Braitman L. A randomized comparative study of manually assisted versus roboticassisted body weight supported treadmill training in persons with traumatic brain injury. PM R 2013; 5(4): 280-90. http://dx.doi.org/10.1016/j.pmrj.2012.10.009
[18] Bruck W. The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage. J Neurol 2005; 252 Suppl 5: v3-v9.
[19] Zuvich RL, McCauley JL, Pericak-Vance MA, Haines JL. Genetics and pathogenesis of Multiple Sclerosis. Semin Immunol 2009; 21(6): 328-333. http://dx.doi.org/10.1016/j.smim.2009.08.003
[20] Rietberg MB, Brooks D, Uitdehaag BM, and Kwakkel G. Exercise therapy for multiple sclerosis. Cochrane Database for Syst Rev 2005; 25(1): CD003980. http://dx.doi.org/10.1002/14651858.cd003980.pub2
[21] Crayton HJ, Rossman HS. Managing the symptoms of multiple sclerosis: a multimodal approach. Clin Ther 2006; 28(4): 445-460. http://dx.doi.org/10.1016/j.clinthera.2006.04.005
[22] Stuve O, and Oksenberg J. Multiple Sclerosis Overview, 1993.
[23] Hemmett L, Holmes J, Barnes M, Russel N. What drives quality of life in multiple sclerosis? QJM 2004; 97(10): 671-6. http://dx.doi.org/10.1093/qjmed/hch105
[24] Confavreux C, Vukusic S, Moreau T, Adeleine P. Relapses and progression of disability in multiple sclerosis. N Engl J Med 2000; 343(20): 1430-8. http://dx.doi.org/10.1056/NEJM200011163432001
[25] Givon V, Zeilig G, and Achiron A. Gait analysis in multiple sclerosis: Charactersization of temporal-spatial parameters using GAITRite functional ambulation system. Gait Posture 2009; 29(1): 138-142. http://dx.doi.org/10.1016/j.gaitpost.2008.07.011
[26] Benedetti MG, Piperno R, Simoncini L, Bonato P, Tonini A, and Giannini S. Gait abnormalities in minimally impaired multiple sclerosis patients. Mult Scler 1999; 5(5): 363-368. http://dx.doi.org/10.1177/135245859900500510
[27] Kelleher KJ, Spence W, Solomonidis S, and Apatsidis D. The characterization of gait patterns of people with multiple sclerosis. Disabil Rehabil 2010; 32(15): 1242-1250. http://dx.doi.org/10.3109/09638280903464497
[28] Heesen C, Bohm J, Reich C, Kasper J, Goebel M, Gold SM. Patient perception of bodily functions in multiple sclerosis: gait and visual function are the most valuable. Mult Scler 2008; 14(7): 988-991. http://dx.doi.org/10.1177/1352458508088916
[29] Scheinber L, Holland N, Larocca N, Latin P, Bennett A, Hall H. Multiple sclerosis; earning a living. N Y State J Med 1980; 80(9): 1395-1400.
[30] Gandolfi M, Gerion C, Picelli A, Munari D, Waldner A, Tamburin S, Marchioretto F, Smania N. Robotic-assisted vs. sensory integration training in treating gait and balance dysfunctions in patients with multiple sclerosis: a randomized control trial. Front Hum Neurosci 2014; 8: 318. http://dx.doi.org/10.3389/fnhum.2014.00318
[31] Straudi S, Benedetti MG, Venturini E, Manca M, Foti C, Basaglia N. Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomizedcontrol trial. NeuroRehabiliation 2013; 33(4): 555-63.
[32] Beer S, Aschbacher B, Manoglou D, Gamper E, Kool J, Kesselring J. Robotic-assisted gait training in multiple sclerosis: a pilot randomized trail. Mult Scler 2008; 14(2): 231-6. http://dx.doi.org/10.1177/1352458507082358
[33] Vaney C, Gattlen B, Lugon-Moulin V, Meichtry A, Hausammann R, Foinant D, Anchisi-Bellwald AM, Palaci C, Hilfiker R. Robotic-assisted step training (lokomat) not superior to equal intensity of over-ground rehabilitation in patients with multiple sclerosis. Neurorehabil Neural Repair 2012; 26(3): 212-21. http://dx.doi.org/10.1177/1545968311425923
[34] Straudi S, Fanciullacci C, Martinuzzi C, Pavarelli C, Rossi B, Chisari C, Basaglia N. The effects of robot-assisted gait training in progressive multiple sclerosis: A randomized controlled trial. Mult. Scler, 2015 (Epub ahead of print)
[35] Schwarz I, Sajin A, Moreh E, Fisher I, Neeb M, Forest A, Vaknin-Dembinsky A, Karusis D, Meiner Z. Robot-assisted gait training in multiple sclerosis patients: a randomized trail. Mult Scler 2012; 18(6): 881-90. http://dx.doi.org/10.1177/1352458511431075
[36] Lo AC, Triche EW. Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training. Neurorehabil Neural Repair 2008; 22(6): 661-71. http://dx.doi.org/10.1177/1545968308318473
[37] Ruiz J, Labas MP, Triche EW, Lo AC. Combination of robotassited and conventional body-weight-supported treadmill training improves gait in persons with multiple sclerosis: a pilot study. J Neurol Phys Ther 2013; 37(4): 187-93. http://dx.doi.org/10.1097/NPT.0000000000000018
[38] Kim SD, Allen NE, Canning CG and Fung VS. Postural instability in patients with Parkinson’s disease. Epidemiology, pathophysiology, and management. CNS Drugs 2013; 27: 97-112. http://dx.doi.org/10.1007/s40263-012-0012-3
[39] Rinalduzzi S, Trompetto C, Marinelli, AlIbardi A, Missori P, Fattapposta F, Pierelli F, Curra A. Balance dysfunction in Parkinson’s disease. Biomed Res Int 2015; 2015: 434683. http://dx.doi.org/10.1155/2015/434683
[40] Bohnen NI, Muller ML, Koeppe RA, Studenski SA, Kilbourn MA, Frey KA, Albin RL. History of falls in Parkinsons disease is associated with reduced cholinergic activity. Neurology 2009; 73(20): 1670-6. http://dx.doi.org/10.1212/WNL.0b013e3181c1ded6
[41] Morris ME, Iansek R, Matyas YA, Summers JL. The pathogenesis of gait hypokinesia in Parkinson’s disease. Brain 1994; 117: 1169-1181. http://dx.doi.org/10.1093/brain/117.5.1169
[42] Smania N, Corato E, Tinazzi M, Stanzani C, Fiaschi A, Girardi P, Gandolfi M. Effect of balance training on postural instability in patients with idiopathic Parkinson’s disease. Neurorehabil Neural Repair 2010; 24(9): 826-34. http://dx.doi.org/10.1177/1545968310376057
[43] Giladi N, Nieuwboer A: Understanding and treating freezing of gait in parkinsonism, proposed working definition, and setting of stage. Mov Disord 2008; 23(2): S423-425.
[44] Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martion P, Poewe W, Sampaio C, Stern MB, Dodel R, Bubois B, Holloway R, Jankovic J, Kulisevsky J, Lang AE, Lees A, Leurgans S, LeWitt PA, Nyenhuis D, Olanow CW, Rascol O, Schrag A, Teresi JA, van Hilten JJ, PaPelle N; Movement Disorder Society UPDRS Revision Task Force. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Discord 2008; 23(15): 2129-70. http://dx.doi.org/10.1002/mds.22340
[45] Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology 1967; 17(5): 427-442. http://dx.doi.org/10.1212/WNL.17.5.427
[46] Tomlinson CL, Her CP, Clarke CE, Meek C, Patel S, Stow R, Deane KH, Shah L, Sackley CM, Wheatley K, Ives N. Physiotherapy for Parkinson’s disease: a comparison of techniques. Cochrane Database System Rev 2014; 6: CD002815. http://dx.doi.org/10.1002/14651858.CD002815.pub2
[47] Abbruzzese G, Marchese R, Avanzino L, Pelosin E. Rehabilitation for Parkinson’s disease: Current outlook and future challenges. Parkinsonism Relat Disord 2016; 22 Suppl 1: S60-4. http://dx.doi.org/10.1016/j.parkreldis.2015.09.005
[48] Lo AC, Chang VC, Gianfrancesco MA, Friedman JH, Patterson TS, Benedicto PF. Reduction of freezing of gait in Parkinson's disease by repetitive robot-assisted treadmill training: a pilot study. J Neuroeng Rehabil 2010; 7: 51. http://dx.doi.org/10.1186/1743-0003-7-51
[49] Ustinova K, Chernikova L, Bilimenko A, Telenkov A. Epstein N. Effect of robotic locomotor training in an individual with Parkinson's disease: a case report. Disabil Rehabil Assist Technol 2011; 6(1): 77-85. http://dx.doi.org/10.3109/17483107.2010.507856
[50] Picelli A, Melotti C, Origano F, Waldner A, Fiaschi A, Santilli V, Smania N. Robot-assisted gait training in patients with Parkinson disease: a randomized controlled trial. Neurorehabil Neural Repair 2012; 26(4): 353-61. http://dx.doi.org/10.1177/1545968311424417
[51] Picelli A, Melotti C, Origano F, Waldner A, Gimigliano R, Smania N. Does robotic gait training improve balance in parkinson’s disease? A randomized controlled trial. Parkinsonism Relat Disord 2012; 18(8): 990-3. http://dx.doi.org/10.1016/j.parkreldis.2012.05.010
[52] Picello A, Melotti C, Origano F, Neri R, Waldner A, Smania N. Robot-assisted gait training in patients versus equal intensity treadmill training in patients with mild to moderate Parkinson disease: a randomized controlled trial. Parkinsonism Relat Disord 2013; 19(6): 605-10. http://dx.doi.org/10.1016/j.parkreldis.2013.02.010
[53] Sale P, De Pandis MF, Le Pera D, Sova I, Cimolin V, Ancillao A, Albertini G, Galli M. Stocchi F, Franceschini M. Robotassisted walking training for individuals with Parkinson’s disease; a pilot randomized controlled trial. BMC Neurol 2013; 13: 50. http://dx.doi.org/10.1186/1471-2377-13-50
[54] Carda S, Invernizzi M, Baricich A, Comi C, Croquelois A, Cizari C. Robotic gait training is not superior to conventional treadmill training in Parkinson disease: a single-blind randomized controlled trial Neurorehabil Neural Repair 2012; 26(9): 1027-34. http://dx.doi.org/10.1177/1545968312446753
[55] Picelli A, Melotti C, Origano F, Neri R, Verze E, Gandolfi M, Waldner A, Smania N. Robotic-assisted gait training is not superior to balance training for improving postural stability in patients with mild to moderate Parkinson's disease: a singleblind randomized controlled study. Clin Rehabil 2015; 29(4): 339-347. http://dx.doi.org/10.1177/0269215514544041
[56] Steffen T, Seney M. Test-retest reliability and minimal detectable change on balance and ambulation tests, the 36- item short-form health survey, and the unified Parkinson disease rating scale in people with Parkinsonism. Phys Ther 2008; 88: 733-746. http://dx.doi.org/10.2522/ptj.20070214
[57] Wang RY. Effect of proprioceptive neuromuscular facilitation on the gait of patients with hemiplegia of long and short duration. Phys Ther 1994; 74: 1108-15.
[58] Rajput A, Rajput AH. Progressive supranuclear palsy: clinical features, pathophysiology, and management. Drugs Aging 2001; 18(12): 913-25. http://dx.doi.org/10.2165/00002512-200118120-00003
[59] Litvan I. Diagnosis and management of progressive supranuclear palsy. Semin Neurol 2001; 21(1): 41-8. http://dx.doi.org/10.1055/s-2001-13118
[60] Ahmed Z, Josephs KA, Gonzalez J, DelleDonne A, Dickson DW. Clinical and neurologic features of progressive supranuclear palsy with severe pallido-nigro-luysial degeneration and axonal dystrophy. Brain 2008; 131(pr 2): 460-72.
[61] Lubarsky M, Juncos JL. Progressive supranuclear palsy: a current review. Neurologist 2008; 14(2): 79-88. http://dx.doi.org/10.1097/NRL.0b013e31815cffc9
[62] Welter ML, Do MC, Chastan N, Torny F, Bloch F, du Montcel ST, Agid Y. Control of vertical components of gait during initiation of walking in normal adults and patients with progressive supranuclear palsy. Gait Posture 2007; 26(3): 393-9. http://dx.doi.org/10.1016/j.gaitpost.2006.10.005
[63] Amano S, Skinner JW, Lee HK, Stegemoller EL, Hack N, Akbar U, Vaillancourt D, McFarland NR, Hass CJ. Discriminating features of gait performance in progressive supranuclear palsy. Parkinsonism Relat Discord 2015; 21(8): 888-93. http://dx.doi.org/10.1016/j.parkreldis.2015.05.017
[64] Golbe LI, Ohman-Strickland PA. A clinical rating scale for progressive supranuclear palsy. Brain 2007; 130(pt 6): 1552- 65. http://dx.doi.org/10.1093/brain/awm032
[65] Steffen TM, Boeve BF, Mollinger-Riemann LA, Peterson CM. Long-term locomotor training for gait and balance in patient with progressive supranuclear palsy and corticobasal degradation. Phys Ther 2007; 87(8): 1078-87. http://dx.doi.org/10.2522/ptj.20060166
[66] Suteerawattananon M, MacNeill B, Protas EJ. Supported treatmill training for gait and balance in patient with progressive supranuclear palsy. Phys Ther 2002; 82(5): 485- 95.
[67] Izzo KL, DiLorenzo P, Roth A. Rehabilitation in progressive supranuclear palsy: case report. Arch Phys Med Rehabil 1986; 67(7): 473-6.
[68] Sosner J, Wall GC, Sznajder J. Progressive supranuclear palsy: clinical presentation and rehabilitation of two patients. Arch Phys Med Rehabil 1993; 74(5): 537-9. http://dx.doi.org/10.1016/0003-9993(93)90120-Y
[69] Sale P, Stocchi F, Galafate D, De Pandis MF, LePera D, Sova I, Galli M, Foti C, Franceschini M. Effects of robot assisted gait training in progressive supranuclear palsy (PSP): a preliminary report. Front Hum Neurosci 2014; 8: 207. http://dx.doi.org/10.3389/fnhum.2014.00207
[70] Abbruzzese G, Marchese R, Avanzino L, Pelosin E. Rehabilitation for Parkinson’s disease: Current outlook and future challenges. Parkinsonism Relat Disord 2016; 22 Suppl 1: S60-4. http://dx.doi.org/10.1016/j.parkreldis.2015.09.005
[71] Mirelman A, Rochester L, Reelick M, Nieuwhof F, Pelosin E, Abbruzzese G, Dockx K, Nieuwboer A, Hausdorff JM. VTIME: a treadmill training augmented by virtual reality to decrease fall risk in older adults: study design of a randomized controlled trial. BMC Neurol 2013; 13: 15. http://dx.doi.org/10.1186/1471-2377-13-15
[72] Mirelman A, Vaidan I, Deutsch JE. Virtual reality and motor imagery: promising tools for assessment and therapy in Parkinson’s disease. Mov Discord 2013; 28(11): 1597-608. http://dx.doi.org/10.1002/mds.25670
[73] Peruzzi A, Cereatti A, Della Croce U, Mirelman A. Effects of a virtual reality and treadmill training on gait of subjects with multiple sclerosis: a pilot study. Mult Scler Relat Discord 2016; 5: 91-6. http://dx.doi.org/10.1016/j.msard.2015.11.002
[74] Robles-Garcia V, Corral-Bergantinos Y, Espinosa N, GarciaSancho C, Sanmartin G, Flores J, Cudeiro J, Arias P. Effects of movement imitation training in Parkinson’s disease: A virtual reality pilot study. Parkinsonism Relat Discord 2016; Mar 2. pii: S1353-8020(16)30050-5. http://dx.doi.org/10.1016/j.parkreldis.2016.02.022