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Abstract: Recently, the first author has proposed a new coupled-loading-rate hypothesis as a unique cause of both 
brain and spinal injuries, which states that they are both caused by a Euclidean jolt, an impulsive loading that strikes 

head and spine (or, any other part of the human body)- in several coupled degrees-of-freedom simultaneously. Injury 
never happens in a single direction only, nor is it ever caused by a static force. It is always an impulsive translational plus 
rotational force. The Euclidean jolt causes two basic forms of brain, spine and other musculo-skeletal injuries: (i) 

localized translational dislocations; and (ii) localized rotational disclinations. In the present paper, we first review this 
unique mechanics of a general human mechanical neuro-musculo-skeletal injury, and then describe how it can be 

predicted and controlled by the new crash simulator toolbox. This rigorous  Matlab  toolbox has been developed using an 

existing third-party toolbox DiffMan, for accurately solving differential equations on smooth manifolds and mechanical Lie 
groups. The present crash simulator toolbox performs prediction and control of brain and spinal injuries within the 

framework of the Euclidean group SE(3) of general rigid body motions. 
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1. INTRODUCTION 

Prediction and prevention of traumatic brain injury 

and spinal injury, as well as general musculo-skeletal 

injury, is a very important aspect of preventive medical 

science. In a series of papers [1-4], the first author of 

the present article proposed a new coupled loading-

rate hypothesis as a unique cause of all above injuries. 

This new hypothesis states that the main cause of all 

mechanical injuries is a Euclidean Jolt, which is an 

impulsive loading that strikes any part of the human 

body (head, spine or any bone/joint)- in several 

coupled degrees-of-freedom simultaneously. It never 

goes in a single direction only. Also, it is never a static 

force. It is always an impulsive translational and/or 

rotational force coupled to some mass eccentricity.  

To show this, based on the previously defined 

covariant force law [5-7], we have firstly formulated the 

fully coupled Newton-Euler dynamics of: 

1. Brain’s micro-motions within the cerebrospinal 

fluid inside the cranial cavity; 

2. Any local inter-vertebral motions along the spine; 

and 

3. Any major joint motions in the human musculo-

skeletal system. 
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Then, from it, we have defined the essential concept 

of Euclidean Jolt, which is the main cause of all 

mechanical human injuries. The Euclidean Jolt has two 

main components: 

• Sudden motion, caused either by an accidental 

impact or slightly distorted human movement; 

and 

• Unnatural mass distribution of the human body 

(possibly with some added external masses), 

which causes some mass eccentricity from the 

natural physiological body state.  

This can be intuitively (in plain English”) explained 

in the following way. As we live in a (Euclidean) 3D 

space, one could think that motion of any part of the 

human body, caused either by a voluntary human 

movement, or by an accidental impact, simply obeys 

classical mechanics in 6 degrees-of-freedom: three 

translations and three rotations. However, these 6 

degrees-of-freedom are not independent motions as it 

is suggested by the standard term degrees-of-freedom. 

In reality, these six motions of any body in space are 

coupled. Firstly, three rotations are coupled in the so-

called rotation group (or matrix, or quaternion). 

Secondly, three translations are coupled with the 

rotation group to give the full Euclidean group of rigid 

body motions in space. A simple way to see this is to 

observe someone throwing an object in the air or hitting 

a tennis ball: how far and where it will fly depends not 

only on the standard projectile mechanics, but also on 

its local spin around all three axes simultaneously. 
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Every golf and tennis player knows this simple fact. 

Once the spin is properly defined we have a fully 

coupled Newton-Euler dynamics- to start with. 

The covariant force law for any biodynamical 
system goes one step beyond the Newton-Euler 
dynamics. It states:  

 

Euclidean Force covector field

= Body mass distribution

Euclidean Acceleration vector field

 

This is a nontrivial biomechanical generalization of 

the fundamental Newton’s definition of the force acting 

on a single particle. Unlike classical engineering 

mechanics of multi-body systems, this fundamental law 

of biomechanics proposes that forces acting on a multi-

body system and causing its motions are fundamentally 

different physical quantities from the resulting 

accelerations. In simple words, forces are massive 

quantities while accelerations are massless quantities. 

More precisely, the acceleration vector field includes all 

linear and angular accelerations of individual body 

segments. When we couple them all with the total 

body’s mass-distribution matrix of all body segments 

(including all masses and inertia moments), we get the 

force co-vector field, comprising all the forces and 

torques acting on the individual body segments. In this 

way, we have defined the 6-dimensional Euclidean 

force for an arbitrary biomechanical system. 

Now, for prediction of injuries, we need to take the 

rate-of-change (or derivative, with respect to time) of 

the Euclidean biomechanical force defined above. In 

this way, we get the Euclidean Jolt, which is the 

sudden change (in time) of the 6-dimensional 

Euclidean force:  

 

Euclidean Jolt covector field

= Body mass distribution Euclidean Jerk vector field
 

And again, it consists of two components: (i) 

massless linear and angular jerks (of all included body 

segments), and (ii) their mass distribution. For the sake 

of simplicity, we can say that the mass distribution 

matrix includes all involved segmental masses and 

inertia moments, as well as eccentricities or 

pathological leverages from the normal physiological 

state. 

Therefore, the unique cause of all brain, spine and 

musculo-skeletal injuries has two components: 

• Coupled linear and angular jerks; and 

• Mass distribution with eccentricities. 

In other words, there are no injuries in static 

conditions without any mass eccentricities; all injuries 

are caused by mutually coupled linear and angular 

jerks, which are also coupled with the involved mass 

distribution. 

The Euclidean Jolt causes two forms of 

discontinuous brain, spine or musculo-skeletal injury: 

1. Mild rotational disclinations; and 

2. Severe translational dislocations and/or bone 
fractures. 

In the cited papers above, we have developed the 

soft-body dynamics of biomechanical disclinations and 

dislocations, caused by the Euclidean Jolt, using the 

Cosserat multipolar viscoelastic continuum model. 

Implications of the new universal theory are various, 
as follows. 

A. The research in traumatic brain injury (TBI, see 

Figure 1) has so far identified the rotation of the brain-

stem as the main cause of the TBI due to various 

crashes/impacts. The contribution of my universal Jolt 

theory to the TBI research is the following: 

1. Rigorously defined this brain rotation as a 
mechanical disclination of the brain-stem tissue 
modelled by the Cosserat multipolar soft-body 
model; 

2. Showing that brain rotation is never uni-axial but 
always three-axial; 

3. Showing that brain rotation is always coupled 
with translational dislocations. This is a 
straightforward consequence of my universal Jolt 
theory. 

These apparently ‘obvious’ facts are actually 

radically new: we cannot separately analyze rapid 

brain’s rotations from translations, because they are in 

reality always coupled. 

One practical application of the brain Jolt theory is 

in design of helmets. Briefly, a ‘hard’ helmet saves the 

skull but not the brain; alternatively, a ‘soft’ helmet 

protects the brain from the collision jolt but does not 

protect the skull. A good helmet is both ‘hard’ and ‘soft’. 

A proper helmet would need to have both a hard 

external shell (to protect the skull) and a soft internal 

part (that will dissipate the energy from the collision jolt 

by its own destruction, in the same way as a car saves 
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its passengers from the collision jolt by its own 

destruction). 

Similarly, in designing safer car air-bags, the two 

critical points will be (i) their placement within the car, 

and (ii) their soft-hard characteristics, similar to the 

helmet characteristics described above. 

B. In case of spinal injury (see Figure 2), the 
contribution of my universal Jolt theory is the following: 

1. The spinal injury is always localized at the 
certain vertebral or inter-vertebral point; 

2. In case of severe translational injuries (vertebral 
fractures or discus herniae) they can be 
identified using X-ray or other medical imaging 
scans; in case of microscopic rotational injuries 
(causing the back-pain syndrome) they cannot 
be identified using current medical imaging 
scans; 

3. There is no spinal injury without one of the 
following two causes: 

a. Impulsive rotational + translational loading 
caused by either fast human movements or 
various crashes/impacts; and/or 

 

Figure 1: Human brain and its SE(3)-group of microscopic three-dimensional motions within the cerebrospinal fluid inside the 
cranial cavity. 

 

Figure 2: Human body representation in terms of SE(3)/SE(2)-groups of rigid-body motion, with the vertebral column 
represented as a chain of 26 flexibly-coupled SE(3)-groups. 
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b. Static eccentricity from the normal 
physiological spinal form, caused by external 
loading; 

c. Any spinal injury is caused by a combination 
of the two points above: impulsive rotational + 
translational loading and static eccentricity. 

This is a straightforward consequence of my 

universal Jolt theory. We cannot separately analyze 

translational and rotational spinal injuries. Also, there 

are no static injuries without eccentricity. Indian women 

have for centuries carried bulky loads on their heads 

without any spinal injuries; they just prevented any load 

eccentricities and any jerks in their motion. 

The currently used Principal loading hypothesis that 

describes spinal injuries in terms of spinal tension, 

compression, bending, and shear, covers only a small 

subset of all spinal injuries covered by my universal Jolt 

theory. To prevent spinal injuries we need to develop 

spinal jolt awareness: ability to control all possible 

impulsive spinal loadings as well as static 

eccentricities. 

C. In case of general musculo-skeletal injury, the 

contribution of my universal Jolt theory is the following: 

1. The injury is always localized at the certain joint 

or bone and caused by an impulsive loading, 

which hits this particular joint/bone in several 

coupled degrees-of-freedom simultaneously; 

2. Injury happens when most of the body mass is 

hanging on that joint; for example, in case of a 

knee injury, when most of the body mass is on 

one leg with a semi-flexed knee- and then, 

caused by some external shock, the knee 

suddenly jerks (this can happen in running, 

skiing, and ball games, as well as various 

crashes/impacts); or, in case of shoulder injury, 

when most of the body mass is hanging on one 

arm and then it suddenly jerks. 

To prevent all these injuries we need to develop 

musculo-skeletal jolt awareness. For example, never 

overload a flexed knee and avoid any kind of 

uncontrolled motions (like slipping) or collisions with 

external objects. 

In this paper, we propose two things: firstly, a 

universal theory of brain-and-spine injury prediction 

and prevention; and secondly, a  Matlab
TM  crash-

simulator toolbox for prediction of brain-and-spine 

injury. 

2. BRAIN-AND-SPINE INJURY 

2.1. Traumatic Brain Injury Mechanics 

Traumatic brain injury (TBI) is still a major health 

problem, with over a half-a-milion cases per year, 

mostly caused by motor-vehicle accidents (frequently 

involving alcohol use). TBI occurs when physical 

trauma causes brain damage, which can result from a 

closed head injury
1
 or a penetrating head injury.

2
 In 

both cases, TBI is caused by rapid deformation of the 

brain, resulting in a cascade of pathological events and 

ultimately neuro-degeneration.
3
 Parts of the brain that 

can be damaged include the cerebral hemispheres, 

cerebellum, and brain stem. TBI can cause a host of 

physical, cognitive, emotional, and social effects. TBI is 

a frequent cause of major long-term disability in 

individuals surviving head injuries sustained in war 

zones. This is becoming an issue of growing concern in 

modern warfare in which rapid deployment of acute 

interventions are effective in saving the lives of 

combatants with significant head injuries. Traumatic 

brain injury has been identified as the ‘signature injury’ 

among wounded soldiers of military engagement. 

Rapid deformation of brain matter caused by skull 

acceleration is most likely the cause of concussion, as 

well as more severe TBI. The inability to measure 

deformation directly has led to disagreement and 

confusion about the biomechanics of concussion and 

TBI (see [1] and references therein). 

TBI can be mild, moderate, or severe (depending on 

the extent of the damage to the brain), while the final 

outcome can be anything from complete recovery to 

permanent disability or death (see [8]). Some 

symptoms are evident immediately, while others do not 

surface until several days or weeks after the injury
4
 

(see [9]). 

                                            

1
A closed injury occurs when the head suddenly and violently hits an object but 

the object does not break through the skull. 
2
A penetrating injury occurs when an object pierces the skull and enters brain 

tissue. 
3
In many cases of TBI widespread disruption of the axons occurs through a 

process known as diffuse axonal injury (DAI) or traumatic axonal injury (TAI). 
4
With mild TBI, the patient may remain conscious or may lose consciousness 

for a few seconds or minutes; the person may also feel dazed or not like him- 
or herself for several days or weeks after the initial injury; other symptoms 
include: headache, mental confusion, lightheadedness, dizziness, double 
vision, blurred vision (or tired eyes), ringing in the ears, bad taste in the mouth, 
fatigue or lethargy, a change in sleep patterns, behavioral or mood changes, 
trouble with memory/concentration/calculation. With moderate or severe TBI, 
the patient may show these same symptoms, but may also have: loss of 
consciousness, personality change, a severe/persistent/worsening headache, 
repeated vomiting/nausea, seizures, inability to awaken, dilation (widening) of 
one or both pupils, slurred speech, weakness/numbness in the extremities, 
loss of coordination, increased confusion, restlessness/agitation; vomiting and 
neurological deficit together are important indicators of prognosis and their 
presence may warrant early CT scanning and neurosurgical intervention. 
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The natural cushion that protects the brain from 

trauma is the cerebrospinal fluid (CSF). It resides within 

cranial and spinal cavities and moves in a pulsatile 

fashion to and from the cranial cavity (see Figure 1). 

This motion can be measured by functional magnetic 

resonance imaging (fMRI, see [10] for a review) and 

may be of clinical importance in the diagnosis of 

several brain and spinal cord disorders such as 

hydrocephalus, Chiari malformation, and 

syringomyelia. It was found in [11] that brain and CSF 

of healthy volunteers exhibited periodic motion in the 

frequency range of normal heart rate. Both brain 

hemispheres showed periodic squeezing of the 

ventricles, with peak velocities up to 1 mm/sec followed 

by a slower recoil. Superimposed on the regular 

displacement of the brain stem was a slow, respiratory-

related periodic shift of the neutral position. During the 

Valsalva maneuver, the brain stem showed initial 

caudal and subsequent cranial displacement of 2-3 

mm. Coughing produced a short swing of CSF in the 

cephalic direction. The pressure gradient waveform of 

a linearized Navier-Stokes model of the pulsatile CSF 

flow was found in [12] to be almost exclusively 

dependent on the flow waveform and cross-sectional 

area. 

The microscopic motion of human brain within the 

skull is, in the language of modern dynamics [5-7], 

governed by the Euclidean SE(3)-group of 3D motions. 

Within brain’s SE(3)-group we have both SE(3)-

kinematics (consisting of SE(3)-velocity and its two 

time derivatives: SE(3)-acceleration and SE(3)-jerk) 

and SE(3)-dynamics (consisting of SE(3)-momentum 

and its two time derivatives: SE(3)-force and SE(3)-

jolt), which is brain’s kinematics  brain’s mass-inertia 

distribution. 

As already explained, the external SE(3)-jolt
5
 is a 

sharp and sudden change in the SE(3)-force acting on 

brain’s mass-inertia distribution (given by brain’s mass 

and inertia matrices). That is, a ‘delta’-change in a 3D 

force-vector coupled to a 3D torque-vector, striking the 

head-shell with the brain immersed into the 

cerebrospinal fluid. In other words, the SE(3)-jolt is a 

sudden, sharp and discontinues shock in all 6 coupled 

                                            

5
The mechanical SE(3)-jolt concept is based on the mathematical concept of 

higher-order tangency (rigorously defined in terms of jet bundles of the head’s 
configuration manifold) [7, 13], as follows: When something hits the human 
head, or the head hits some external body, we have a collision. This is 
naturally described by the SE(3)-momentum, which is a nonlinear coupling of 3 
linear Newtonian momenta with 3 angular Eulerian momenta. The tangent to 
the SE(3)-momentum, defined by the (absolute) time derivative, is the SE(3)-
force. The second-order tangency is given by the SE(3)-jolt, which is the 
tangent to the SE(3)-force, also defined by the time derivative. 

dimensions of brain’s continuous micro-motion within 

the cerebrospinal fluid (see Figure 1), namely within the 

three Cartesian (
  
x, y, z )-translations and the three 

corresponding Euler angles around the Cartesian axes: 

roll, pitch and yaw. If the SE(3)-jolt produces a mild 

shock to the brain (e.g., strong head shake), it causes 

mild TBI, with temporary disabled associated sensory-

motor and/or cognitive functions and affecting 

respiration and movement. If the SE(3)-jolt produces a 

hard shock (hitting the head with external mass), it 

causes severe TBI, with the total loss of gesture, 

speech and movement. 

The SE(3)-jolt is rigorously defined in terms of 

differential geometry [7, 13]. Briefly, it is the absolute 

time-derivative of the covariant force 1-form (or, co-

vector field). As already stated, the fundamental law of 

biomechanics is the covariant force law:  

 
Force co-vector field = Mass distribution Acceleration vector--field,  

which is formally written (using the Einstein summation 

convention, with indices labelling the three Cartesian 

translations and the three corresponding Euler angles):  

  
F
μ
= m

μ
a , (μ, = 1,...,6)  

where 
 
F
μ

 denotes the 6 covariant components of the 

external pushing SE(3)-force co-vector field, 
 
m

μ
 

represents the 6  6 covariant components of brain’s 

inertia-metric tensor, while a  corresponds to the 6 
contravariant components of brain’s internal SE(3)-
acceleration vector-field. 

Now, the covariant (absolute, Bianchi) time-

derivative D

dt
( )  of the covariant SE(3)-force 

 
F
μ

 defines 

the corresponding external “striking” SE(3)-jolt co-
vector field:  

   

D

dt
(F

μ
) = m

μ

D

dt
(a ) = m

μ
a +

μ
a
μ
a( ),         (1) 

where 
  

D

dt
(a )  denotes the 6 contravariant components 

of brain’s internal SE(3)-jerk vector-field and overdot 

( ) denotes the time derivative. 
μ

 are the 

Christoffel’s symbols of the Levi-Civita connection for 
the SE(3)-group, which are zero in case of pure 
Cartesian translations and nonzero in case of rotations 
as well as in the full-coupling of translations and 
rotations. 

In the following, we elaborate on the SE(3)-jolt 

concept (using vector and tensor methods) and its 
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biophysical TBI consequences in the form of brain’s 

dislocations and disclinations. 

2.1.1. SE(3)-Group of Brain’s Micro–Motions within 
the CSF 

The brain and the CSF together exhibit periodic 
microscopic translational and rotational motion in a 
pulsatile fashion to and from the cranial cavity, in the 
frequency range of normal heart rate (with associated 
periodic squeezing of brain’s ventricles) [11]. This 
micro-motion is mathematically defined by the 

Euclidean (gauge) 
  
SE(3) -group. Briefly, the 

  
SE(3) -

group is defined as a semidirect (noncommutative) 
product   of 3D rotations and 3D translations:  

   
SE(3) := SO(3) 3.  

Its most important subgroups are the following (see 
Appendix for technical details): 

Subgroup Definition 

SO(3), group of rotations 

in 3D (a spherical joint) 

Set of all proper orthogonal 

3  3  rotational matrices 

SE(2), special Euclidean group 

in 2D (all planar motions) 

Set2of all 3  3  matrices: 

  

cos sin r
x

sin cos r
y

0 0 1
 

SO(2), group of rotations in 2D 

subgroup of SE(2)–group 

(a revolute joint) 

Set of all proper orthogonal 

2  2  rotational matrices 

included in SE(2)  group 

  
3 , group of translations in 3D 

(all spatial displacements) 

Euclidean 3D vector space 

In other words, the gauge 
  
SE(3) -group of Euclidean 

micro-motions of the brain immersed in the 
cerebrospinal fluid within the cranial cavity, contains 

matrices of the form 

  

R b

0 1
,  where b  is brain’s 3D 

micro-translation vector and  R  is brain’s 3D rotation 

matrix, given by the product 
  
R = R R R  of brain’s 

three Eulerian micro-rotations, 

  
roll = R , pitch = R , yaw = R , performed respectively 

about the  x  axis by an angle 
 

,  about the 
 
y  axis 

by an angle 
 

,  and about the  z  axis by an angle  

[5-7, 14, 15]:  

  

R =

1 0 0

0 cos sin

0 sin cos

, R =

cos 0 sin

0 1 0

sin 0 cos

,  

  

R =

cos sin 0

sin cos 0

0 0 1

.  

Therefore, brain’s natural SE(3) -dynamics within 

the cerebrospinal fluid is given by the coupling of 

Newtonian (translational) and Eulerian (rotational) 

equations of micro-motion. 

2.1.2. Brain’s Natural SE(3)-Dynamics 

To support our coupled loading-rate hypothesis, we 

formulate the coupled Newton-Euler dynamics of 

brain’s micro-motions within the scull’s 
  
SE(3) -group of 

motions. The forced Newton-Euler equations read in 

vector (boldface) form  

   

Newton :p Mv = F + p ,

Euler : I = T + + p v,
          (2) 

where  denotes the vector cross product,
6
  

   

M M
ij
= diag{m

1
,m

2
,m

3
} and

I I
ij
= diag{I

1
, I

2
, I

3
}, (i, j = 1,2,3)

 

are brain’s (diagonal) mass and inertia matrices,
7
 

defining brain’s mass-inertia distribution, with principal 
inertia moments given in Cartesian coordinates (

  
x, y, z ) 

by volume integrals  

  

I
1
= (z2

+ y2 )dxdydz, I
2
= (x2

+ z2 )dxdydz,

I
3
= (x2

+ y2 )dxdydz,
 

dependent on brain’s density 
  
= (x, y, z) ,  

   
v v

i
= [v

1
,v

2
,v

3
]

t
and    

i
= [

1
,

2
,

3
]

t  

                                            

6
Recall that the cross product 

 
u v  of two vectors 

 
u  and 

 
v  

equals
   
u v = uvsin n , where  is the angle between 

 
u  and 

 
v , while  n  is a 

unit vector perpendicular to the plane of 
 
u  and 

 
v  such that 

 
u  and v  form a 

right-handed system. 
7
In reality, mass and inertia matrices (

  
M,I ) are not diagonal but rather full 

 3 3  positive-definite symmetric matrices with coupled mass- and inertia-

products. Even more realistic, fully-coupled mass-inertial properties of a brain 
immersed in (incompressible, irrotational and inviscid) cerebrospinal fluid are 

defined by the single non-diagonal  6 6  positive-definite symmetric mass-

inertia matrix M
SE (3)

, the so-called material metric tensor of the SE(3) -group, 

which has all nonzero mass-inertia coupling products. In other words, the  6 6  

matrix 
   
M

SE (3)
 contains: (i) brain’s own mass plus the added mass matrix 

associated with the fluid, (ii) brain’s own inertia plus the added inertia matrix 
associated with the potential flow of the fluid, and (iii) all the coupling terms 
between linear and angular momenta. However, for simplicity, in this paper we 

shall consider only the simple case of two separate diagonal 3 3  matrices 

( M,I ). 
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(where [ ]t  denotes the vector transpose) are brain’s 

linear and angular velocity vectors (that is, column 
vectors),  

   
F F

i
= [F

1
, F

2
, F

3
] and T T

i
= [T

1
,T

2
,T

3
]  

are gravitational and other external force and torque 
co-vectors (that is, row vectors) acting on the brain 
within the scull,  

   

p p
i

Mv = [ p
1
, p

2
, p

3
] = [m

1
v

1
,m

2
v

2
,m

2
v

2
] and

i
I = [

1
,

2
,

3
] = [I

1 1
, I

2 2
, I

3 3
]

 

are brain’s linear and angular momentum co-vectors. 

In tensor form, the forced Newton-Euler equations 
(2) read:  

p
i
M

ij
v j = F

i
+

ik

j p
j

k , (i, j,k = 1,2,3)

i
I
ij

j
= T

i
+

ik

j

j

k
+

ik

j p
j
vk ,

 

where the permutation symbol 
 ik

j  is defined as:  

  

ik

j
=

+1 if (i, j,k) is (1,2,3),(3,1,2) or (2,3,1),

1 if (i, j,k) is (3,2,1),(1,3,2) or (2,1,3),

0 otherwise: i = j or j = k  or k = i.

 

In scalar form, the forced Newton-Euler equations 
(2) expand as  

   

Newton :

p
1

= F
1

m
3
v

3 2
+ m

2
v

2 3

p
2

= F
2
+ m

3
v

3 1
m

1
v

1 3

p
3

= F
3

m
2
v

2 1
+ m

1
v

1 2

,

Euler :

1

= T
1
+ (m

2
m

3
)v

2
v

3
+ (I

2
I

3
)

2 3

2

= T
2
+ (m

3
m

1
)v

1
v

3
+ (I

3
I

1
)

1 3

3

= T
3
+ (m

1
m

2
)v

1
v

2
+ (I

1
I

2
)

1 2

,

        (3) 

showing brain’s individual mass and inertia couplings. 

Equations (2)-(3) can be derived from the 
translational + rotational kinetic energy of the brain

8
  

   
E

k
=

1

2
v

t
Mv +

1

2

t
I ,           (4) 

                                            

8
In a fully-coupled Newton-Euler brain dynamics, instead of equation (Ek) we 

would have brain’s kinetic energy defined by the inner product:  

E
k
=
1

2

p
M
SE (3)

p
.  

or, in tensor form  

E =
1

2
M

ij
v
i
v
j
+
1

2
I
ij

i j
.  

For this we use the Kirchhoff-Lagrangian equations 
(see [1] and references therein):  

   

d

dt
v
E

k
=

v
E

k
+ F,

d

dt
E

k
= E

k
+

v
E

k
v + T,

        (5) 

where 
   v

E
k
=

E
k

v
, E

k
=

E
k ; in tensor form these 

equations read  

  

d

dt vi
E =

ik

j

v j
E( ) k

+ F
i
,

d

dt
i
E =

ik

j
j
E( ) k

+
ik

j

v j
E( )vk

+ T
i
.

 

Using (4)-(5), brain’s linear and angular momentum 
co-vectors are defined as  

   
p =

v
E

k
, = E

k
,  

or, in tensor form  

  
p

i
=

v
i
E,

i
=

i
E,  

with their corresponding time derivatives, in vector form  

    
p =

d

dt
p =

d

dt
v
E, =

d

dt
=

d

dt
E,  

or, in tensor form  

p
i
=
d

dt
p
i
=
d

dt vi
E,

i
=
d

dt i
=
d

dt
i
E,  

or, in scalar form  

    

p = [ p
1
, p

2
, p

3
] = [m

1
v

1
,m

2
v

2
,m

3
v

3
],

= [
1
,

2
,

3
] = [I

1 1
, I

2 2
, I

3 3
].

 

While brain’s healthy 
  
SE(3) -dynamics within the 

cerebrospinal fluid is given by the coupled Newton-
Euler micro-dynamics, the TBI is actually caused by the 

sharp and discontinuous change in this natural 
  
SE(3)  

micro-dynamics, in the form of the SE(3) -jolt, causing 

brain’s discontinuous deformations. 

2.1.3. Brain’s Traumatic Dynamics: the SE(3)-jolt 

The SE(3) -jolt, the actual cause of the TBI (in the 

form of the brain’s plastic deformations), is defined as a 
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coupled Newton+Euler jolt; in (co)vector form the 

  
SE(3) -jolt reads

9
  

    

SE(3) jolt :
Newton jolt : F = p p p ,

Euler jolt : T = p v p v,
 

where the linear and angular jolt co-vectors are  

    
F Mv = [F

1
, F

2
, F

3
], T I = [T

1
,T

2
,T

3
],  

where  

    
v = [v

1
,v

2
,v

3
]

t
, = [

1
,

2
,

3
]

t
,  

are linear and angular jerk vectors. 

In tensor form, the 
  
SE(3) -jolt reads

10
  

F
i
= p

i ik

j p
j

k

ik

j p
j

k , (i, j,k = 1,2,3)

T
i
=

i ik

j

j

k

ik

j

j

k

ik

j p
j
vk

ik

j p
j
vk ,

 

in which the linear and angular jolt covectors are 
defined as:  

    

F F
i
= Mv M

ij
v

j
= [F

1
, F

2
, F

3
],

T T
i
= I I

ij

j
= [T

1
,T

2
,T

3
],

 

where v = vi ,  and 
  =

i  are linear and angular jerk 

vectors. 

In scalar form, the 
  
SE(3) -jolt expands as:  

   

Newton jolt :

F
1
= p

1
m

2 3
v

2
+ m

3 2
v

3
+ v

3 2( ) m
2
v

2 3
,

F
2
= p

2
+ m

1 3
v

1
m

3 1
v

3
m

3
v

3 1
+ m

1
v

1 3
,

F
3
= p

3
m

1 2
v

1
+ m

2 1
v

2
v

2 1
m

1
v

1 2
,

Euler jolt :

T
1
=

1
(m

2
m

3
) v

3
v

2
+ v

2
v

3( ) (I
2

I
3
)

3 2
+

2 3( ),
T

2
=

2
+ (m

1
m

3
) v

3
v

1
+ v

1
v

3( ) + (I
1

I
3
)

3 1
+

1 3( ),
T

3
=

3
(m

1
m

2
) v

2
v

1
+ v

1
v

2( ) (I
1

I
2
)

2 1
+

1 2( ).

 

We remark here that the linear and angular 

momenta (
  
p, ), forces (

  
F,T ) and jolts (

   
F,T ) are co-

vectors (row vectors), while the linear and angular 
velocities (

  
v, ), accelerations (

   
v, ) and jerks (

   
v, ) 

                                            

9
Note that the derivative of the cross-product of two vectors follows the 

standard calculus product-rule: 
    

d

dt
(u v) = u v + u v.  

10
In this paragraph the overdots actually denote the absolute Bianchi 

(covariant) time-derivative (1), so that the jolts retain the proper covector 
character, which would be lost if ordinary time derivatives are used. However, 
for the sake of simplicity and wider readability, we stick to the same overdot 
notation. 

are vectors (column vectors). This bio-physically 
means that the ‘jerk’ vector should not be confused 
with the ‘jolt’ co-vector. For example, the ‘jerk’ means 
shaking the head’s own mass-inertia matrices (mainly 
in the atlanto-occipital and atlanto-axial joints), while 
the ‘jolt’means actually hitting the head with some 
external mass-inertia matrices included in the ‘hitting’ 
SE(3)-jolt, or hitting some external static/massive body 
with the head (e.g., the ground- gravitational effect, or 
the wall- inertial effect). Consequently, the mass-less 
‘jerk’ vector represents a (translational+rotational) non-
collision effect that can cause only weaker brain 
injuries, while the inertial ‘jolt’ co-vector represents a 
(translational+rotational) collision effect that can cause 
hard brain injuries. 

For example, while driving a car, the SE(3)-jerk of 

the head-neck system happens every time the driver 

brakes abruptly. On the other hand, the SE(3)-jolt 

means actual impact to the head. Similarly, the 

whiplash-jerk, caused by rear-end car collisions, is like 

a soft version of the high pitch-jolt caused by the 

boxing ‘upper-cut’. Also, violently shaking the head left-

right in the transverse plane is like a soft version of the 

high yaw-jolt caused by the sidewise, or hook punch. 

2.1.4. Brain’s Dislocations and Disclinations 
Caused by the SE(3)-jolt 

Recall from introduction that for mild TBI, the best 

injury predictor is considered to be the product of 

brain’s strain and strain rate, which is the standard 

isotropic viscoelastic continuum concept. To improve 

this standard concept, in this subsection, we consider 

human brain as a 3D anisotropic multipolar Cosserat 

viscoelastic continuum (see [1] and references therein), 

exhibiting coupled-stress-strain elastic properties. This 

non-standard continuum model is suitable for analyzing 

plastic (irreversible) deformations and fracture 

mechanics in multi-layered materials with 

microstructure (in which slips and bending of layers 

introduces additional degrees of freedom, non-existent 

in the standard continuum models). 

The 
  
SE(3) -jolt 

   
(F,T)  causes two types of brain’s 

rapid discontinuous deformations: 

1. The Newton jolt   F  can cause micro-translational 
dislocations, or discontinuities in the Cosserat 
translations; 

2. The Euler jolt   T  can cause micro-rotational 
disclinations, or discontinuities in the Cosserat 
rotations. 

To precisely define brain’s dislocations and 

disclinations, caused by the SE(3) -jolt (F,T) , we first 
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define the coordinate co-frame, i.e., the set of basis 1-

forms 
  
{dx

i} , given in local coordinates 

  
x

i
= (x

1, x
2 , x

3 ) = (x, y, z) , attached to brain’s center-of-

mass. Then, in the coordinate co-frame 
  
{dx

i}  we 

introduce the following set of brain’s plastic-

deformation-related 
  
SE(3) -based differential 

 
p  

forms
11

 (see, e.g. [7, 13]): 

the dislocation current 1-form, 
 
J = Ji dx

i;  

the dislocation density 2-form, =
1
2 ij dx

i dx j ;  

the disclination current 2-form, 
 
S =

1
2 Sij dx

i dx j ;  and 

the disclination density 3-form, 
 
Q =

1
3!Qijk dx

i dx j dxk , 

where  denotes the exterior wedge-product. 
According to Edelen [16, 17], these four SE(3) -based 

differential forms satisfy the following set of continuity 
equations:  

   
= dJ S,            (6) 

   Q = dS,             (7) 

d =Q,            (8) 

dQ = 0,            (9) 

where  d  denotes the exterior derivative. 

In components, the simplest, fourth equation (9), 
representing the Bianchi identity, can be rewritten as  

                                            

11
Differential p  forms are totally skew-symmetric covariant tensors, defined 

using the exterior wedge-product and exterior derivative. The proper definition 

of exterior derivative d  for a p  form  on a smooth manifold M , includes 

the Poincaré lemma [7, 13]: d(d ) = 0 , and validates the general Stokes 

formula  

M
=

M
d ,  

where M  is a p  dimensional manifold with a boundary and M  is its 

(p 1)  dimensional boundary, while the integrals have appropriate 

dimensions. 

A p  form  is called closed if its exterior derivative is equal to zero,  

d = 0.  

From this condition one can see that the closed form (the kernel of the exterior 
derivative operator d ) is conserved quantity. Therefore, closed p  forms 

possess certain invariant properties, physically corresponding to the 
conservation laws. 

A p  form  that is an exterior derivative of some (p 1)  form ,  

= d ,  

is called exact (the image of the exterior derivative operator d ). By Poincaré 

lemma, exact forms prove to be closed automatically,  

d = d(d ) = 0.  

This lemma is the foundation of the de Rham cohomology theory. 

 
dQ = lQ[ijk ] dx

l dxi dx j dxk = 0,  

where i / xi , while [ij...]  denotes the skew-

symmetric part of ij... . 

Similarly, the third equation (8) in components reads  

1

3!
Qijk dx

i dx j dxk = k [ij ] dx
k dxi dx j ,     or

Qijk = 6 k [ij ].
 

The second equation (7) in components reads  

   

1

3!
Q

ijk
dxi dx j dxk

=
k
S

[ij]
dxk dxi dx j

,     or

Q
ijk
= 6

k
S

[ij]
.

 

Finally, the first equation (6) in components reads  

   

1

2 ij
dxi dx j

= (
j
J

i

1

2
S

ij
) dxi dx j ,     or

ij
= 2

j
J

i
S

ij
.

 

In words, we have: 

• The 2-form equation (6) defines the time 

derivative 
   

=
1

2 ij
dxi dx j

 of the dislocation 

density  as the (negative) sum of the 

disclination current  S  and the curl of the 

dislocation current  J . 

• The 3-form equation (7) states that the time 

derivative 
    
Q =

1

3!
Q

ijk
dxi dx j dxk

 of the 

disclination density Q  is the (negative) 

divergence of the disclination current  S . 

• The 3-form equation (8) defines the disclination 
density Q  as the divergence of the dislocation 

density , that is, Q is the exact 3-form. 

• The Bianchi identity (9) follows from equation (8) 
by Poincaré lemma and states that the 
disclination density Q  is conserved quantity, 

that is, Q  is the closed 3-form. Also, every 4-

form in 3D space is zero. 

From these equations, we can derive two important 
conclusions: 

1. Being the derivatives of the dislocations, brain’s 
disclinations are higher-order tensors, and thus 
more complex quantities, which means that they 
present a higher risk for the severe TBI than 
dislocations- an old fact which is supported by 
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the literature (see review of existing TBI-models 
given in Introduction). 

2. Brain’s dislocations and disclinations are 
mutually coupled by the underlaying SE(3)  
group, which means that we cannot separately 
analyze translational and rotational TBIs- a new 
fact which is not supported by the literature. 

2.2. Spinal Injury Mechanics 

The traditional principal loading hypothesis [18, 19], 

which describes spinal injuries in terms of spinal 

tension, compression, bending, and shear, is 

insufficient to predict and prevent the cause of the 

back-pain syndrome. Its underlying mechanics is 

simply not accurate enough. 

On the other hand, to be recurrent, musculo-skeletal 

injury must be associated with a histological change, 

i.e., the modification of associated tissues within the 

body. However, incidences of functional 

musculoskeletal injury, e.g., lower back pain, generally 

shows little evidence of structural damage [20]. The 

incidence of injury is likely to be a continuum ranging 

from little or no evidence of structural damage through 

to the observable damage of muscles, joints or bones. 

The changes underlying functional injuries are likely to 

consist of torn muscle fibers, stretched ligaments, 

subtle erosion of join tissues, and/or the application of 

pressure to nerves, all amounting to a disruption of 

function to varying degrees and a tendency toward 

spasm. 

For example, in a review of experimental studies on 

the role of mechanical stresses in the genesis of 

intervertebral disk degeneration and herniation [21], the 

authors dismissed simple mechanical stimulations of 

functional vertebra as a cause of disk herniation, 

concluding instead that a complex mechanical 

stimulation combining forward and lateral bending of 

the spine followed by violent compression is needed to 

produce posterior herniation of the disk. Considering 

the use of models to estimate the risk of injury the 

authors emphasize the need to understand this 

complex interaction between the mechanical forces 

and the living body [22]. Compressive and shear 

loading increased significantly with exertion load, lifting 

velocity, and trunk asymmetry [23]. Also, it has been 

stated that up to two-thirds of all back injuries have 

been associated with trunk rotation [24]. In addition, 

load-lifting in awkward environment places a person at 

risk for low back pain and injury [25]. These risks 

appear to be increased when facing up or down an 

inclined surface. 

The above-mentioned safe spinal motions 

(flexion/extension, lateral flexion and rotation) are 

governed by standard Euler’s rotational intervertebral 

dynamics coupled to Newton’s micro-translational 

dynamics. On the other hand, the unsafe spinal events, 

the main cause of spinal injuries, are caused by 

intervertebral SE(3)-jolts, the sharp and sudden, delta- 

(forces + torques) combined, localized both in time and 

in space. These localized intervertebral SE(3)-jolts do 

not belong to the standard Newton-Euler dynamics. 

The only way to monitor them would be to measure in 

vivo” the rate of the combined (forces + torques)- rise. 

Ivancevic proposed in [2, 4] a new locally-coupled 
loading-rate hypothesis, which states that the main 
cause of both soft- and hard-tissue spinal injury is a 
localized Euclidean jolt, or SE(3) -jolt, an impulsive 

loading that strikes a localized spine in several coupled 
degrees-of-freedom (DOF) simultaneously. To show 
this, based on the previously defined covariant force 
law, we formulate the coupled Newton-Euler dynamics 
of the local spinal motions and derive from it the 
corresponding coupled SE(3) -jolt dynamics. The 

SE(3) -jolt is the main cause of two forms of local 

discontinuous spinal injury: (i) hard-tissue injury of local 
translational dislocations; and (ii) soft-tissue injury of 
local rotational disclinations. Both the spinal 
dislocations and disclinations, as caused by the SE(3) -
jolt, are described using the Cosserat multipolar 
viscoelastic continuum model. 

While we can intuitively visualize the SE(3)-jolt, for 

the purpose of simulation we use the necessary 

simplified, decoupled approach (neglecting the 3D 

torque matrix and its coupling to the 3D force vector). 

Note that decoupling is a kind of linearization that 

prevents chaotic behavior, giving an illusion of full 

predictability. In this decoupled framework of reduced 

complexity, we define: 

• The cause of hard spinal injuries (discus hernia) 

is a linear 3D-jolt vector hitting some 

intervertebral joint- the time rate-of-change of a 

3D-force vector (linear jolt = mass  linear jerk); 

and 

• The cause of soft spinal injuries (back-pain 

syndrome) is an angular 3-axial jolt hitting some 

intervertebral joint- the time rate-of-change of a 

3-axial torque (angular jolt = inertia moment  

angular jerk). 
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This decoupled framework has been implemented 

in the Human Biodynamics Engine, a world-class 

neuro-musculo-skeletal dynamics simulator (with 270 

DOFs, the same number of equivalent muscular 

actuators and two-level neural reflex control), 

developed by the present author at Defence Science 

and Technology Organization, Australia. This 

kinematically validated human motion simulator has 

been described in a series of papers and books (see 

[26] and references therein). 

As shown in [4], the mechanics of spinal 

(intervertebral) injury is essential the same as the 

mechanics of brain injury, described in the previous 

subsection. In particular, we can conclude that 

localized spinal dislocations and disclinations are 

mutually coupled by the underlaying SE(3) -group, 

which means that we cannot separately analyze 

translational and rotational spinal injuries- a new fact 

which is not supported by the literature. 

3. RIGOROUS CRASH SIMULATOR TOOLBOX FOR 

MatlabTM  

A Matlab toolbox entitled Rigorous Crash Simulator 
( RCS ) is currently under collaborative development by 
the Land Operations Division, Defence Science & 
Technology Organisation, Australia and the Centre for 
Intelligent Systems Research, Deakin University 

[Waurn Ponds] Australia. This new toolbox is a spin-off 
of the Human Biodynamics Enginecite [26], based on 
two existing Matlab toolboxes: (i) third-party toolbox 
DiffMan (for solving ODEs on manifolds), by K. Engø, 
A. Marthinsen and H. Munthe-Kaas, and (ii) standard 
Virtual Reality (VR) toolbox for Matlab  and Simulink. 

Briefly, human spine with head and pelvis (see 

Figure 3), mechanically represents a chain of 27 rigid 

bodies, flexibly joined by 26 inter-vertebral joints. For 

rigorous prediction and prevention spinal injuries under 

various crash-impact situations, modern computational 

mechanics needs to be used. It is modeled as a chain 

of 26 Euclidean groups of motion and numerically 

solved by Lie-group integrators.  

The RCS  toolbox is developed around the main Lie-

group integrator, called Runge-Kutta-Munte-Kass 

(RKMK) integrator (see next section). 

3.1. Rigid Body Motion and ODEs on Smooth 
Manifolds 

Recall from mechanics of brain-and-spine injury 
described in the previous section, that the special 
Euclidean group SE(3)  of rigid-body motions in our 

everyday Euclidean space 3
,  is a semidirect (non-

commutative) product of the rotation group SO(3)  and 

the translation group 
  

3
.  This practically means that 

the motion of a rigid body in a 3D space is given by a 

 

Figure 3: A 3D model of human spine implemented in the VR toolbox of Matlab. 
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pair (R, p) SE(3)  of rotation matrix R  and translation 

vector p , such that its angular velocity (attitude) matrix 

 and linear velocity vector  v  belong to its Lie algebra 

se(3) , that is: 
    
( ,v) se(3) 6 . 

Kinematic equations of motion of a rigid body are:  

    
p = Rv, R = R .

 

Kinetic energy of a rigid body has the symmetrical 
form:  

Ek =
1

2
v
T
Mv +

1

2
T
I ,         (10) 

where (assuming uniform mass-distribution) mass and 
inertia matrices are diagonal:  

M = diag{m1,m2,m3},

I = diag{I1, I2, I3}.
 

From the kinetic energy (10), dynamical equations 

of motion follow (these are coupled Newton-Euler 

equations, see my injury papers for the derivation):  

Mv =Mv , I = I +Mv v.
 

Finally, by including the forces fi  and torques i  

acting on the body (i = 1,...,n) , with input controls 

ui = u(t) , the dynamical-control equations become: 

   

Mv = Mv +F, (with F =

i

fiu
i ),       (11) 

   

I = I + Mv v + T, (with T =

i

iu
i ).      (12) 

In the spinal crash-test model, the motion of the 

head, as well as of each individual vertebral body, is 

governed by the pair of vector equations (11)-(12). 

They are evolving on the smooth SE(3) -manifold. 

3.1.1. Evolving ODEs on Smooth Manifolds 

To give a brief description of the computational 
mechanics implemented in the RCS  toolbox, consider 
the following ODE (ordinary differential equation) 
evolving in time ( t 0)  on some configuration manifold 

M :
12

  

   
x = F(x), x(0) = x

0
M ,

 

                                            

12
For example, M = SE(3),  the configuration manifold of a rigid body. 

where 
   x = dx / dt , while F(x) (M )  is the tangent 

vector-field on M  passing through the points x(t) . 

The solution of the ODE (13) is determined by its 

flow t ,F (x0 )  that starts from the initial point x(0) = x0,  

which is formally defined as:  

x(t) = t ,F (x0 ), (for  t 0).  

In general, any tangent vector-field is an 
infinitesimal generator of its flow. This means that the 
vector-field F(x)  is given by the time-derivative of the 

flow t ,F (x0)  at the initial point:  

F(x) =
d

dt t ,F (x0 ) | t = 0.  

The inverse of the time-derivative of the flow is 
something that plays the role of the time-integral, which 
is the exponential map, a nonlinear generalization of 

the matrix exponential. So, the flow t ,F  is given by the 

exponential map of (tF) : 

t ,F = exp(tF).  

In the special case of the linear ODE defined by 

some matrix A :  

   

x = Ax, we have

t , A
(x) = exp(tA)x

0         (14) 

with the standard matrix exponential: 

exp(tA) =
n=0

1

n!
t nAn .  

In the case of linear ODEs, solved by the matrix 
exponentials, we can see that their flows do not 

commute: going first along the flow t ,A  and then along 

some other flow t ,B  is different from going first along 

the flow t ,B  and then along the flow t ,A.  This is 

because matrix multiplication is not commutative, so it 
yields the commutator: 

[A,B] = AB BA 0.  

This non-commutativity of flows is even more 
significant in a general case of nonlinear ODEs. Let us 

start from some point x0  on the manifold M , and flow 

from x0  first along t ,F =  exp(tF)  and then along some 

other flow t ,G =  exp(tG),  so that we come to some 

point x1.  If we now reverse the order of flows and 

starting from the same point x0  we flow first along t ,G  
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and then along t ,F - we will in general arrive at a 

different point x2 x1 . In terms of exponential maps 

this non-commutativity of flows can be written as:  

   
exp(sF ) exp(tG) exp( sF ) exp( tG) 0.

 

If the flows do not commute, then their vector-fields 
do not commute either. This statement is defined by 
the commutator [F,G] 0  called the Lie bracket of 

vector-fields F  and G , which has the following three 
properties:  

[F,G] = [G,F],

[F +G,H ] = [F,H ]+ [G,H ] ,

0 = [F,[G,H ]]+ [G,[H ,F]]+ [H ,[F,G]],

 

called anti-symmetry, bilinearity and Jacobi identity, 
respectively. The set of all tangent vector-fields (M )  

on the manifold M  now (with the Lie bracket) becomes 
the Lie algebra. 

3.1.2. Runge-Kutta-Munte-Kass Family of Lie-Group 
Integrators 

The RCS  toolbox is developed around the main Lie-

group integrator, called Runge-Kutta-Munte-Kass 

(RKMK) integrator [27, 28], which combines standard 

Runge-Kutta family with Lie-group integration methods 

developed by A. Iserles (for a recent review, see [32]) 

and H. Munthe-Kaas [29-31]. 

ODEs are solved in DiffMan usiing the following 
general 5-step procedure:

13
 

1. Construct an initial domain object y  in a 

homogeneous space; 

2. Construct a vector-field object vf  over the 

domain object y ; DiffMan finds numerically the 

integral curve of this vector-field through the 
initial domain object; 

3. Construct a time stepper object ts , ehich determines 
the numerical method used to advance the 
numerical solution along the integral line; it 
consists of two parts: coordinate and method; 

4. Construct a flow object f , which is defined by 

the vector-field object; and 

5. Solve the ODE by the flow object which is done 
by evaluating the flow object at the initial domain 
object, start time, end time, and step size. 

                                            

13
For technical details with worked examples, see [27, 28]. 

3.2. Computational Newton-Euler Dynamics 

3.2.1. First-Order (Velocities) Equations of Motion 

Standard description of Newton-Euler dynamics 
starts with the first-order equations of motion in terms 
of translational and rotational velocities:

14
 

Newton :
p
1
(t) m

1
v
1
(t) = F

1
(t) m

3
v
3
(t)

2
(t) + m

2
v
2
(t)

3
(t),

p
2
(t) m

2
v
2
(t)= F

2
(t) m

3
v
3
(t)

1
(t) m

1
v
1
(t)

3
(t),

p
3
(t) m

3
v
3
(t) = F

3
(t) m

2
v
2
(t)

1
(t) + m

1
v
1
(t)

2
(t).

 

   

Euler :

1
(t) J

1 1
(t) = T

1
(t) + J

2
J

3( ) 2
(t)

3
(t) + m

2
m

3( )v2
(t)v

3
(t),

2
(t) J

2 2
(t) = T

2
(t) + J

3
J

1( ) 1
(t)

3
(t) + m

3
m

1( )v1
(t)v

3
(t),

3
(t) J

3 3
(t) = T

3
(t) + J

1
J

2( ) 1
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Numerical solution of these equations (for some 
initial conditions) gives translational and rotational 

velocities ( vi (t)  and i (t),  i = 1,2,3 ). However, to be 

able to actually see the body motion in a virtual 3D 
environment, we need to evaluate these equations into 
the second-order equations in terms of translations 

(displacements xi ) and rotations (Euler angles i ). 

3.2.2. Second-Order (Coordinates) Equations of 
Motion 

The above standard first-order Newton-Euler 
velocity equations are expanded/evaluated into the 

following coordinate equations of motion:  
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Euler :
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For simplicity, in these evaluated 2nd order 

equations of motion, forces Fi (t)  are replaced by 

springs kixi (t)  and dampers 
   
b

i
x

i
(t) ; and similarly for 

rotations, instead of torques Ti (t)  we have angular 

springs Ki i (t)  and angular dampers 
   
B

i i
(t).

 

3.2.3. Computational form of Newton-Euler 
Equations of Rigid Motions Newton-Euler 
Acceleration ODEs 

Newton-Euler acceleration ODEs are defined as:  

                                            

14
 means ekvivalent, whatever is left from it is not part of the equations to be 

solved. 
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Newton :
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Euler :
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Full set of first-order ODEs suitable for numerical 
integration. 

The following set of 12 first-order ODEs has been 
implemented in the RCS  toolbox for simulating a single 
intervertebral joint:  
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init. conds : x
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(0) = a

i
, x
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(0) = c

i
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(0) = d

i
,

i
(0) = e

i
, (for i = 1,2,3).  

The ODEs (15) have been solved using the RKMK 
integrator, as follows. 

3.2.4. Matlab/DiffMan implementation 

Testing the RKMK Integrator. 

For testing the RKMK integrator, we implemented 
three second-order Lorenz-like ODEs, rewritten as six 

coupled first-order ODEs. In MathematicaTM , these 
equations are implemented as: 

x (t) = v1(t), v1(t) = y(t) x(t),

y (t) = v2(t), v2(t) = x(t)( z(t))+ x(t) y(t),

z (t) = v3(t), v3(t) = x(t)y(t) z(t),

x(0) = z(0) = 0.001, y(0) = 1,

v1(0) = v2(0) = v3(0) = 0.01.

 

and solved using the NDSolve integrator for 15 sec. 

In DiffMan these ODEs are implemented in the 
following m-function:

15
 

function [la] = vfexShady2Lorenz(t,y) 

la = liealgebra(y); 

ydat = getdata(y); 

dat = [ 0 0 0-1 1 0; 

0 0 0 1-1-ydat(4); 

0 0 0 0 ydat(4)-1; 

1 0 0 0 0 0; 

0 1 0 0 0 0; 

0 0 1 0 0 0; ]; 

setdata(la,dat); 

return; 

The phase plots of this test problem for 15 sec are 

shown in Figure 4. 

DiffMan implementation of the system (15). 

Matlab/DiffMan implementation of the system (15), 

using the RKMK integrator, is given by the following 

two m-function: 

                                            

15
More precisely, to implement any particular ODE-system in DiffMan, two m-

functions are required. We are showing here only the first function (in which the 
ODEs are implemented), while we are skipping the second function (which 
calls the first one), because it is too long and out of scope of this paper. 

 

Figure 4: Test problem: solution of the 2nd-order Lorenz-like ODEs in Matlab, using the RKMK integrator. The phase plots are 
identical to those calculated by Mathematica’s integrator NDSolve. 

(15) 
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function [la] = vfexShady2(t,y) 

la = liealgebra(y); 

ydat = getdata(y); 

global k1 k2 k3 b1 b2 b3 B1 B2 B3 K1 K2 K3 m1 m2 
m3 J1 J2 J3 

dat = [0 1 0 0 0 0 0 0 0 0 0 0; 

-k1-b1 0 0 0 0 0 0 0-m3*ydat(6) 0 m2*ydat(4); 

 0 0 0 1 0 0 0 0 0 0 0 0; 

 0 0-k2-b2 0 0 0-m3*ydat(6) 0 0 0-m1*ydat(2); 

 0 0 0 0 0 1 0 0 0 0 0 0; 

 0 0 0 0-k3-b3 0-m2*ydat(4) 0 m1*ydat(2) 0 0; 

 0 0 0 0 0 0 0 1 0 0 0 0; 

 0 0 0 0 0 (m2-m3)*ydat(4)-K1-B1 0 0 0 (J2-
J3)*ydat(10); 

 0 0 0 0 0 0 0 0 0 1 0 0; 

 0 0 0 0 0 (m3-m1)*ydat(2) 0 0-K2-B2 0 (J3-J1)*ydat(8); 

 0 0 0 0 0 0 0 0 0 0 0 1; 

 0 0 0 (m1-m2)*ydat(2) 0 0 0 0 0 (J1-J2)*ydat(8)-K3-
B3]; 

setdata(la,dat); 

return; 

Initial modeling of external impact forces for the 

crash simulation. 

To simulate the action of an impact force on the 

single intervertebral joint, a ‘soft form of’ the impulse 

Dirac delta function term with amplitude A  has been 

modeled by:  

F(t) = Asech(At A / 2),  

and added to translational Newtonian accelerations 

only. Due to translational/rotational coupling between 

Newton’s and Euler’s equations within the SE(3) -group 

dynamics, this translational impact force should cause 

both macroscopic angular change and microscopic 

displacement change within the intervertebral joint. 

This type of impact forces with amplitudes in the range 

20g-100g are used to model road-vehicle crashes, 

while the amplitudes in the range 100g-400g are used 

to model land-mine related crashes and helicopter hard 

landings. In addition, for modeling effects of riding an 

operational watercraft with the speed of 20-30 knots on 

the high seas with waves of 2m-3m hight, the following 

sinus forces with frequency  are used: 

F(t) = Asin( t).  

To test RKMK integrator on the impact forces (16)-

(17) the following two versions of the forced Van der 

Pol oscillator (with parameters a,b,w ): 

    

sech : x(t) = Asech( At A / 2) a 1 4b x(t)2
x(t) + w

2
x(t),

sin : x(t) = Asin( t) a 1 4b x(t)2
x(t) + w

2
x(t),

 

for the simulation with near-zero initial conditions, have 

been inplemented in the following two m-functions, 

respectively: 

function [la] = vfexVdPolSech(t,y) 

la = liealgebra(y); 

ydat = getdata(y); 

a=1.5; b=5; w=2; A=20; 

dat=[ 0 1 ; 

-w*w+A*sech(A*t-A/2)/ydat(1) a*(1-
4*b*ydat(1)*ydat(1))]; 

setdata(la,dat); 

return; 

function [la] = vfexVdPolSin(t,y) 

la = liealgebra(y); 

ydat = getdata(y); 

a=1.5;b=5;w=2;A=20;fr=3; 

dat=[ 0 1 ; 

-w*w+A*sin(fr*t)/ydat(1) a*(1-4*b*ydat(1)*ydat(1))]; 

setdata(la,dat); 

return; 

Full set of the forced first-order ODEs for a single 
joint crash dynamics. 

After successful tasting of the forced Van der Pol 

oscillators (18) against Mathematica’s integrator 

NDSolve using the above m-functions, the following set 

of 12 first-order SE(3) -ODEs has been implemented in 

the RCS  toolbox for simulating an impact force action 

on a single intervertebral joint:  
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i
, (for i = 1,2,3).  

DiffMan implementation of the full set of the forced 

first-order ODEs for a single joint crash dynamics. 

(19) 
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The full set of forced SE(3) -ODEs (19) has been 

implemented in the following m-function: 

function [la] = vfexShady4(t,y) 

la = liealgebra(y); 

ydat = getdata(y); 

global k1 k2 k3 b1 b2 b3 B1 B2 B3 K1 K2 K3 m1 m2 
m3 J1 J2 J3 

global A1 A2 A3 A4 A5 A6 

val1=A1*sech(A1*t-A1/2); 

val2=A2*sech(A2*t-A2/2); 

val3=A3*sech(A3*t-A3/2); 

dat = [0 1 0 0 0 0 0 0 0 0 0 0; 

 (-k1+val1/ydat(2))-b1 0 0 0 0 0 0 0-m3*ydat(6) 0 
m2*ydat(4); 

 0 0 0 1 0 0 0 0 0 0 0 0; 

 val2/ydat(4) 0-k2-b2 0 0 0-m3*ydat(6) 0 0 0-
m1*ydat(2); 

 0 0 0 0 0 1 0 0 0 0 0 0; 

 val3/ydat(6) 0 0 0-k3-b3 0-m2*ydat(4) 0 m1*ydat(2) 0 
0; 

 0 0 0 0 0 0 0 1 0 0 0 0; 

 0 0 0 0 0 (m2-m3)*ydat(4)-K1-B1 0 0 0 (J2-
J3)*ydat(10); 

 0 0 0 0 0 0 0 0 0 1 0 0; 

 0 0 0 0 0 (m3-m1)*ydat(2) 0 0-K2-B2 0 (J3-J1)*ydat(8); 

 0 0 0 0 0 0 0 0 0 0 0 1; 

 0 0 0 (m1-m2)*ydat(2) 0 0 0 0 0 (J1-J2)*ydat(8)-K3-
B3]; 

setdata(la,dat); 

return; 

3.3. Full Spine Crash Simulator 

The full spine crash simulator, as implemented in 
the RCS  toolbox, figures the forced SE(3) -equations of 

motion (19) at each spinal (intervertebral) joint 
independently. This dynamical decoupling along the 
spine is the only way to deal with the shear 
dimensionality of our problem: seven SE(3) -joints for 

the neck only (cervical spine) and 26 SE(3) -joints for 

the full spine. To compensate for this dynamical 
decoupling along the spine, at the same time we are 
inertially re-coupling all the joints along the spine: in the 
first joint (above the C1) the only mass is the head; in 
the second joint (above the C2) we have two masses: 
the head and C1; in the third joint (above C3) we have 
three masses: head + C1 + C2, etc. Regarding 
simulating various crashes, in the RCS  toolbox, the so-
called ‘generic crash’ is represented by a 3D force-
vector wich hits somewhere along the spine, at one 
only vertebral joint, so this force vector has 3 
components: 

 

F
crash

(t) =
A1sech(A1t A1 / 2), A2
sech(A2t A2 / 2), A3sech(A3t A3 / 2)

.
 

The full spine crash simulator has been 
implemented in the form of the following vector of 26 

SE(3) -equations of motion (with the joint-labeling 

superscript index 
 
j= 1,...,26 ):  
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j , (for i = 1,2,3).  

In the full spine SE(3) -crash model (20), all crash 

amplitudes Ai
j  (for i = 1,.., 3; j = 1,..,26 ) are assumed 

zero, unless the impact joint has been selected with its 

3 amplitudes only (e.g., 
 
Ai
7 - for the C7 cervical 

intervertebral joint). 

In the Matlab implementation of (20) in the RCS  
toolbox (see Figure 5), the external forces are applied 
to each rigid body in the spinal system: all vertebras as 
well as the head and the pelvis. To propagate the force 
effect along the spine we make use of both graphical 
and numerical vertebral inter-dependency. In the 
graphical part, the whole spine is modeled as a tree 
structure. All vertebras are children to the pelvis and 
they are also connected to the head (which is the 
grandchild). So, the transformation of each spinal part 
affects all its children. In the numerical part, the 
transform propagation is modeled as a mass-
propagation. Here, the mass of each spinal part is 
equal to the accumulated mass of all its children plus 
its own mass.  

DiffMan implementation of the full spine crash 
simulator (20). 

The full set of forced SE(3) -ODEs (20) has been 

implemented, for each spinal joint independently, in the 
following m-function: 

function [la] = vfexShady5(t,y) 

la = liealgebra(y); 

ydat = getdata(y); 

global k1 k2 k3 b1 b2 b3 B1 B2 B3 K1 K2 K3 m1 m2 

m3 J1 J2 J3 
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global A1 A2 A3 A4 A5 A6 

global prev_data 

%x 

if ~isWithin(ydat(1),-0.001,0.001) 

ydat(1)=clip(ydat(1),-0.01,0.01); 

ydat(2)=clip(ydat(2),10,10); 

end 

%y 

if ~isWithin(ydat(3),-0.001,0.001) 

ydat(3)=clip(ydat(3),-0.01,0.01); 

ydat(4)=clip(ydat(4),10,10); 

end 

%z 

if ~isWithin(ydat(5),-0.001,0.001) 

ydat(5)=clip(ydat(5),-0.01,0.01); 

ydat(6)=clip(ydat(6),10,10); 

end 

%th1 

if ~isWithin(ydat(7),-0.01,0.01) 

ydat(7)=clip(ydat(7),-0.01,0.01); 

ydat(8)=clip(ydat(8),100,100); 

end 

%th2 

if ~isWithin(ydat(9),-0.01,0.01) 

ydat(9)=clip(ydat(9),-0.01,0.01); 

ydat(10)=clip(ydat(10),100,100); 

end 

%th3 

if ~isWithin(ydat(11),-0.01,0.01) 

ydat(11)=clip(ydat(11),-0.01,0.01); 

ydat(12)=clip(ydat(12),100,100); 

end 

val1=A1*sech(A1*t-A1/2); 

val2=A2*sech(A2*t-A2/2); 

val3=A3*sech(A3*t-A3/2); 

dat = [0 1 0 0 0 0 0 0 0 0 0 0; 

(-k1+val1/ydat(2))-b1 0 0 0 0 0 0 0-m3*ydat(6) 0 

m2*ydat(4); 

0 0 0 1 0 0 0 0 0 0 0 0; 

val2/ydat(4) 0-k2-b2 0 0 0-m3*ydat(6) 0 0 0-

m1*ydat(2); 

0 0 0 0 0 1 0 0 0 0 0 0; 

val3/ydat(6) 0 0 0-k3-b3 0-m2*ydat(4) 0 m1*ydat(2) 0 0; 

0 0 0 0 0 0 0 1 0 0 0 0; 

0 0 0 0 0 (m2-m3)*ydat(4)-K1-B1 0 0 0 (J2-

J3)*ydat(10); 

0 0 0 0 0 0 0 0 0 1 0 0; 

0 0 0 0 0 (m3-m1)*ydat(2) 0 0-K2-B2 0 (J3-J1)*ydat(8); 

0 0 0 0 0 0 0 0 0 0 0 1; 

0 0 0 (m1-m2)*ydat(2) 0 0 0 0 0 (J1-J2)*ydat(8)-K3-B3]; 

setdata(la,dat); 

return; 

3.4. Road-Vehicle Crash Simulation 

Several crashes are implemented in the RCS  
toolbox, including road-vehicle crash, ejection seat and 
land-mine crash. In particular, Figure 6 shows the basic 
implementation of the road-vehicle crash. Note that, 
about 1 sec after the crash, the head moves back 
purely due to spinal elasticity. This particular simulated 
crash could cause severe TBI if the distance from the 
head and the steering wheel (or some other frontal part 
of cabin) is shorter that the movement amplitude. If the 
distance is safe, only a mild loss of consciousness for a 
few minutes could be expected, together with the strain 
in the cervical spine (neck). 

4. CONCLUSION AND FUTURE CONSIDERATIONS 

We have presented the unique mechanics of 

traumatic brain-and-spine injury based on the new 

 

Figure 5: RCS toolbox at work: simulating a boxing punch (left hook) in the head. 
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coupled loading-rate hypothesis, which states that the 

main cause of all mechanical human injuries is the 

Euclidean jolt, an impulsive loading that strikes head 

and spine (or any other part of the human body)- in 

several coupled degrees-of-freedom simultaneously, 

which causes two basic forms of brain and spinal 

injuries: (i) localized translational dislocations; and (ii) 

localized rotational disclinations. This model-theory of 

traumatic brain-and-spine injury is supported by the 

Rigorous Crash Simulator toolbox for Matlab , to be 

used for modeling high-impact crashes which can lead 

to both brain and spinal injuries. An example of road-

vehicle crash is included. 

Future research is planned in the following two 

parallel directions: 

(i) Extending the model to cover the whole human 

musculo-skeletal system; and 

(ii) Validation of the model against the experimental 

data, using both optical kinematic ‘Vicon’ system 

and mechanical ‘Xsens’ system (including 3D 

accelerometers, gyros and magnetometers). The 

expected outcome of the future research would 

be validated whole body biomechanical 

simulator. 
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