Bitter Taste Receptors in Innate Immunity: T2R38 and Chronic Rhinosinusitis 

Authors

  • Alan D. Workman Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA
  • Noam A. Cohen Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA

DOI:

https://doi.org/10.12970/2308-7978.2017.05.03

Keywords:

 T2R38, Bitter Taste Receptor, Chronic Rhinosinusitis, Sinonasal Immunity.

Abstract

 Bitter taste receptors (T2Rs) serve a purpose far beyond taste sensation in the tongue; they have emerged as significant components of respiratory innate immune defense. T2R38, a specific T2R expressed in the airway, is activated by secreted products from gram-negative bacteria, and triggers nitric oxide (NO) production as a response. NO is directly bactericidal and also acts as a second messenger to increase ciliary beating and mucociliary clearance. T2R38 has common genetic polymorphisms that can render the receptor non-functional, and variations in functionality have demonstrated clinical impacts. Homozygotes for the non-functional form of the receptor have increased gram-negative bacterial proliferation in vivo, and these patients also are at a higher risk for chronic rhinosinusitis requiring functional endoscopic sinus surgery. Further studies have shown increased in vitro potential for biofilm formation in airway epithelial cells obtained from homozygote “non-taster” patients. Ongoing research into the clinical impact of T2R38 and other bitter taste receptors may yield novel therapeutics that leverage innate immune defense mechanisms and offer alternatives to conventional antibiotic treatment. 

References


[1] Tizzano M, Gulbransen BD, Vandenbeuch A, et al. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proceedings of the National Academy of Sciences of the United States of America 2010; 107(7): 3210-5. https://doi.org/10.1073/pnas.0911934107
[2] Lee RJ, Xiong G, Kofonow JM, et al. T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. The Journal of Clinical Investigation 2012; 122(11): 4145-59. https://doi.org/10.1172/JCI64240
[3] Saunders CJ, Christensen M, Finger TE, et al. Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation. Proceedings of the National Academy of Sciences of the United States of America 2014; 111(16): 6075-80. https://doi.org/10.1073/pnas.1402251111
[4] Lee RJ, Chen B, Redding KM, et al. Mouse nasal epithelial innate immune responses to Pseudomonas aeruginosa quorum-sensing molecules require taste signaling components. Innate immunity 2013; 20(6): 606-17. https://doi.org/10.1177/1753425913503386
[5] Lee RJ, Kofonow JM, Rosen PL, et al. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. The Journal of Clinical Investigation 2014; 124(3): 1393-405. https://doi.org/10.1172/JCI72094
[6] Sleigh MA, Blake JR, Liron N. The propulsion of mucus by cilia. The American Review of Respiratory Disease 1988; 137(3): 726-41. https://doi.org/10.1164/ajrccm/137.3.726
[7] Shaari J, Palmer JN, Chiu AG, et al. Regional analysis of sinonasal ciliary beat frequency. American Journal of Rhinology 2006; 20(2): 150-4.
[8] Liu L, Shastry S, Byan-Parker S, et al. An autoregulatory mechanism governing mucociliary transport is sensitive to mucus load. American Journal of Respiratory Cell and Molecular Biology 2014; 51(4): 485-93. https://doi.org/10.1165/rcmb.2013-0499MA
[9] Parker D, Prince A. Innate immunity in the respiratory epithelium. American Journal of Respiratory Cell and Molecular Biology 2011; 45(2): 189-201. https://doi.org/10.1165/rcmb.2011-0011RT
[10] Luk LJ, Steele TO, Mace JC, et al. Health utility outcomes in patients undergoing medical management for chronic rhinosinusitis: a prospective multiinstitutional study. International Forum of Allergy & Rhinology 2015; 5(11): 1018-27. https://doi.org/10.1002/alr.21588
[11] Bhattacharyya N, Grebner J, Martinson NG. Recurrent acute rhinosinusitis: epidemiology and health care cost burden. Otolaryngology--Head and Neck Surgery : Official Journal of American Academy of Otolaryngology-Head and Neck Surgery 2012; 146(2): 307-12. https://doi.org/10.1177/0194599811426089
[12] Manes RP, Batra PS. Bacteriology and antibiotic resistance in chronic rhinosinusitis. Facial Plastic Surgery Clinics of North America 2012; 20(1): 87-91. https://doi.org/10.1016/j.fsc.2011.10.010
[13] Hume DA, Underhill DM, Sweet MJ, et al. Macrophages exposed continuously to lipopolysaccharide and other agonists that act via toll-like receptors exhibit a sustained and additive activation state. BMC Immunology 2001; 2: 11. https://doi.org/10.1186/1471-2172-2-11
[14] Barham HP, Cooper SE, Anderson CB, et al. Solitary chemosensory cells and bitter taste receptor signaling in human sinonasal mucosa. International Forum of Allergy & Rhinology 2013; 3(6): 450-7. https://doi.org/10.1002/alr.21149
[15] Zhang Y, Hoon MA, Chandrashekar J, et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 2003; 112(3): 293-301. https://doi.org/10.1016/S0092-8674(03)00071-0
[16] Iwata S, Yoshida R, Ninomiya Y. Taste transductions in taste receptor cells: basic tastes and moreover. Current Pharmaceutical Design 2014; 20(16): 2684-92. https://doi.org/10.2174/13816128113199990575
[17] Laffitte A, Neiers F, Briand L. Functional roles of the sweet taste receptor in oral and extraoral tissues. Current Opinion in Clinical Nutrition and Metabolic Care 2014; 17(4): 379-85. https://doi.org/10.1097/MCO.0000000000000058
[18] Clark AA, Liggett SB, Munger SD. Extraoral bitter taste receptors as mediators of off-target drug effects. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2012; 26(12): 4827-31. https://doi.org/10.1096/fj.12-215087
[19] Depoortere I. Taste receptors of the gut: emerging roles in health and disease. Gut 2014; 63(1): 179-90. https://doi.org/10.1136/gutjnl-2013-305112
[20] Behrens M, Meyerhof W. Oral and extraoral bitter taste receptors. Results and Problems in Cell Differentiation 2010; 52: 87-99. https://doi.org/10.1007/978-3-642-14426-4_8
[21] Kinnamon SC. Taste receptor signalling - from tongues to lungs. Acta Physiologica 2012; 204(2): 158-68. https://doi.org/10.1111/j.1748-1716.2011.02308.x
[22] Sternini C, Anselmi L, Rozengurt E. Enteroendocrine cells: a site of 'taste' in gastrointestinal chemosensing. Current Opinion in Endocrinology, Diabetes, and Obesity 2008; 15(1): 73-8. https://doi.org/10.1097/MED.0b013e3282f43a73
[23] Shah AS, Ben-Shahar Y, Moninger TO, et al. Motile cilia of human airway epithelia are chemosensory. Science 2009; 325(5944): 1131-4. https://doi.org/10.1126/science.1173869
[24] Brockhoff A, Behrens M, Massarotti A, et al. Broad tuning of the human bitter taste receptor hTAS2R46 to various sesquiterpene lactones, clerodane and labdane diterpenoids, strychnine, and denatonium. Journal of Agricultural and Food Chemistry 2007; 55(15): 6236-43. https://doi.org/10.1021/jf070503p
[25] Tizzano M, Cristofoletti M, Sbarbati A, et al. Expression of taste receptors in solitary chemosensory cells of rodent airways. BMC Pulmonary Medicine 2011; 11: 3. https://doi.org/10.1186/1471-2466-11-3
[26] Li F. Taste perception: from the tongue to the testis. Molecular Human Reproduction 2013; 19(6): 349-60. https://doi.org/10.1093/molehr/gat009
[27] Giovannucci DR, Groblewski GE, Sneyd J, et al. Targeted phosphorylation of inositol 1,4,5-trisphosphate receptors selectively inhibits localized Ca2+ release and shapes oscillatory Ca2+ signals. The Journal of Biological Chemistry 2000; 275(43): 33704-11. https://doi.org/10.1074/jbc.M004278200
[28] Voigt A, Hubner S, Lossow K, et al. Genetic labeling of Tas1r1 and Tas2r131 taste receptor cells in mice. Chem Senses 2012; 37(9): 897-911. https://doi.org/10.1093/chemse/bjs082
[29] Taruno A, Matsumoto I, Ma Z, et al. How do taste cells lacking synapses mediate neurotransmission? CALHM1, a voltage-gated ATP channel. BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology 2013; 35(12): 1111-8. https://doi.org/10.1002/bies.201300077
[30] Zhang Z, Zhao Z, Margolskee R, et al. The transduction channel TRPM5 is gated by intracellular calcium in taste cells. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience 2007; 27(21): 5777-86. https://doi.org/10.1523/JNEUROSCI.4973-06.2007
[31] Miyoshi MA, Abe K, Emori Y. IP(3) receptor type 3 and PLCbeta2 are co-expressed with taste receptors T1R and T2R in rat taste bud cells. Chem Senses 2001; 26(3): 259- 65. https://doi.org/10.1093/chemse/26.3.259
[32] Taruno A, Vingtdeux V, Ohmoto M, et al. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 2013; 495(7440): 223-6. https://doi.org/10.1038/nature11906
[33] Gulbransen B, Silver W, Finger TE. Solitary chemoreceptor cell survival is independent of intact trigeminal innervation. The Journal of Comparative Neurology 2008; 508(1): 62-71. https://doi.org/10.1002/cne.21657
[34] Kim UK, Drayna D. Genetics of individual differences in bitter taste perception: lessons from the PTC gene. Clinical Genetics 2005; 67(4): 275-80. https://doi.org/10.1111/j.1399-0004.2004.00361.x
[35] Chadwick M, Trewin H, Gawthrop F, et al. Sesquiterpenoids lactones: benefits to plants and people. International journal of Molecular Sciences 2013; 14(6): 12780-805. https://doi.org/10.3390/ijms140612780
[36] Jimenez PN, Koch G, Thompson JA, et al. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiology and Molecular Biology Reviews : MMBR 2012; 76(1): 46-65. https://doi.org/10.1128/MMBR.05007-11
[37] Li Z, Nair SK. Quorum sensing: how bacteria can coordinate activity and synchronize their response to external signals? Protein Science : a Publication of the Protein Society 2012; 21(10): 1403-17. https://doi.org/10.1002/pro.2132
[38] Parsek MR, Greenberg EP. Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proceedings of the National Academy of Sciences of the United States of America 2000; 97(16): 8789-93. https://doi.org/10.1073/pnas.97.16.8789
[39] Gunn JS, Bakaletz LO, Wozniak DJ. What's on the Outside Matters: The Role of the Extracellular Polymeric Substance of Gram-negative Biofilms in Evading Host Immunity and as a Target for Therapeutic Intervention. The Journal of Biological Chemistry 2016; 291(24): 12538-46. https://doi.org/10.1074/jbc.R115.707547
[40] Fang FC. Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. The Journal of Clinical Investigation 1997; 99(12): 2818-25. https://doi.org/10.1172/JCI119473
[41] Marcinkiewicz J. Nitric oxide and antimicrobial activity of reactive oxygen intermediates. Immunopharmacology 1997; 37(1): 35-41. https://doi.org/10.1016/S0162-3109(96)00168-3
[42] Barraud N, Hassett DJ, Hwang SH, et al. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. Journal of Bacteriology 2006; 188(21): 7344-53. https://doi.org/10.1128/JB.00779-06
[43] Salathe M. Regulation of mammalian ciliary beating. Annual Review of Physiology 2007; 69: 401-22. https://doi.org/10.1146/annurev.physiol.69.040705.141253
[44] Adappa ND, Farquhar D, Palmer JN, et al. TAS2R38 genotype predicts surgical outcome in nonpolypoid chronic rhinosinusitis. International Forum of Allergy & Rhinology 2016; 6(1): 25-33. https://doi.org/10.1002/alr.21666
[45] Chandrashekar J, Mueller KL, Hoon MA, et al. T2Rs function as bitter taste receptors. Cell 2000; 100(6): 703-11. https://doi.org/10.1016/S0092-8674(00)80706-0
[46] Margolskee RF. Molecular mechanisms of bitter and sweet taste transduction. The Journal of Biological Chemistry 2002; 277(1): 1-4. https://doi.org/10.1074/jbc.R100054200
[47] Hayes JE, Wallace MR, Knopik VS, et al. Allelic variation in TAS2R bitter receptor genes associates with variation in sensations from and ingestive behaviors toward common bitter beverages in adults. Chem Senses 2011; 36(3): 311-9. https://doi.org/10.1093/chemse/bjq132
[48] Bufe B, Breslin PA, Kuhn C, et al. The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Current Biology : CB 2005; 15(4): 322-7. https://doi.org/10.1016/j.cub.2005.01.047
[49] Adappa ND, Zhang Z, Palmer JN, et al. The bitter taste receptor T2R38 is an independent risk factor for chronic rhinosinusitis requiring sinus surgery. International Forum of Allergy & Rhinology 2014; 4(1): 3-7. https://doi.org/10.1002/alr.21253
[50] Greisner WA, 3rd, Settipane GA. Hereditary factor for nasal polyps. Allergy and Asthma Proceedings : the official Journal of Regional and State Allergy Societies 1996; 17(5): 283-6. https://doi.org/10.2500/108854196778662192
[51] Lockey RF, Rucknagel DL, Vanselow NA. Familial occurrence of asthma, nasal polyps and aspirin intolerance. Annals of Internal Medicine 1973; 78(1): 57-63. https://doi.org/10.7326/0003-4819-78-1-57
[52] Cohen NA, Widelitz JS, Chiu AG, et al. Familial aggregation of sinonasal polyps correlates with severity of disease. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery 2006; 134(4): 601-4. https://doi.org/10.1016/j.otohns.2005.11.042
[53] Chen B, Shaari J, Claire SE, et al. Altered sinonasal ciliary dynamics in chronic rhinosinusitis. American Journal of Rhinology 2006; 20(3): 325-9. https://doi.org/10.2500/ajr.2006.20.2870
[54] Davis SS, Illum L. Absorption enhancers for nasal drug delivery. Clinical Pharmacokinetics 2003; 42(13): 1107-28. https://doi.org/10.2165/00003088-200342130-00003
[55] Naraghi M, Deroee AF, Ebrahimkhani M, et al. Nitric oxide: a new concept in chronic sinusitis pathogenesis. American Journal of Otolaryngology 2007; 28(5): 334-7. https://doi.org/10.1016/j.amjoto.2006.10.014
[56] Cohen NA. Sinonasal mucociliary clearance in health and disease. The Annals of Otology, Rhinology & Laryngology Supplement 2006; 196: 20-6. https://doi.org/10.1177/00034894061150S904
[57] Antunes MB, Cohen NA. Mucociliary clearance--a critical upper airway host defense mechanism and methods of assessment. Current Opinion in Allergy and Clinical Immunology 2007; 7(1): 5-10. https://doi.org/10.1097/ACI.0b013e3280114eef
[58] Gudis D, Zhao KQ, Cohen NA. Acquired cilia dysfunction in chronic rhinosinusitis. American Journal of Rhinology & Allergy 2012; 26(1): 1-6. https://doi.org/10.2500/ajra.2012.26.3716
[59] Mfuna Endam L, Cormier C, Bosse Y, et al. Association of IL1A, IL1B, and TNF gene polymorphisms with chronic rhinosinusitis with and without nasal polyposis: A replication study. Archives of Otolaryngology--Head & Neck Surgery 2010; 136(2): 187-92. https://doi.org/10.1001/archoto.2009.219
[60] Gonzalez CD, K; Rios, M; Cohen, NA; Villalon, M. TNFa Affects Ciliary Beat Response to Increased Viscosity in Human Pediatric Airway Epithelium. BioMed Research International 2016; Manuscript in Press. https://doi.org/10.1155/2016/3628501
[61] Antunes MB, Gudis DA, Cohen NA. Epithelium, cilia, and mucus: their importance in chronic rhinosinusitis. Immunology and Allergy Clinics of North America 2009; 29(4): 631-43. https://doi.org/10.1016/j.iac.2009.07.004
[62] Feldman C, Anderson R, Cockeran R, et al. The effects of pneumolysin and hydrogen peroxide, alone and in combination, on human ciliated epithelium in vitro. Respiratory Medicine 2002; 96(8): 580-5. https://doi.org/10.1053/rmed.2002.1316
[63] Min YG, Oh SJ, Won TB, et al. Effects of staphylococcal enterotoxin on ciliary activity and histology of the sinus mucosa. Acta Oto-Laryngologica 2006; 126(9): 941-7. https://doi.org/10.1080/00016480500469016
[64] Adappa ND, Howland TJ, Palmer JN, et al. Genetics of the taste receptor T2R38 correlates with chronic rhinosinusitis necessitating surgical intervention. International Forum of Allergy & Rhinology 2013; 3(3): 184-7. https://doi.org/10.1002/alr.21140
[65] Adappa ND, Truesdale CM, Workman AD, et al. Correlation of T2R38 taste phenotype and in vitro biofilm formation from nonpolypoid chronic rhinosinusitis patients. International Forum of Allergy & Rhinology 2016; 6(8): 783-91. https://doi.org/10.1002/alr.21803
[66] Cohen M, Kofonow J, Nayak JV, et al. Biofilms in chronic rhinosinusitis: a review. American Journal of Rhinology & Allergy 2009; 23(3): 255-60. https://doi.org/10.2500/ajra.2009.23.3319
[67] Bendouah Z, Barbeau J, Hamad WA, et al. Biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa is associated with an unfavorable evolution after surgery for chronic sinusitis and nasal polyposis. Otolaryngology--Head and Neck Surgery : Official Journal of American Academy of Otolaryngology-Head and Neck Surgery 2006; 134(6): 991-6. https://doi.org/10.1016/j.otohns.2006.03.001
[68] Prince AA, Steiger JD, Khalid AN, et al. Prevalence of biofilm-forming bacteria in chronic rhinosinusitis. American Journal of Rhinology 2008; 22(3): 239-45. https://doi.org/10.2500/ajr.2008.22.3180
[69] Psaltis AJ, Weitzel EK, Ha KR, et al. The effect of bacterial biofilms on post-sinus surgical outcomes. American Journal of Rhinology 2008; 22(1): 1-6. https://doi.org/10.2500/ajr.2008.22.3119
[70] Huvenne W, van Bruaene N, Zhang N, et al. Chronic rhinosinusitis with and without nasal polyps: what is the difference? Current Allergy and Asthma Reports 2009; 9(3): 213-20. https://doi.org/10.1007/s11882-009-0031-4

Downloads

Published

2017-01-09

Issue

Section

Articles