Current Perspective on the Location and Function of Gamma-Aminobutyric Acid (GABA) and its Metabolic Partners in the Kidney
DOI:
https://doi.org/10.12970/2310-984X.2014.02.02.5Keywords:
Gamma-aminobutyric acid, Pericytes, Kidney, Renoprotective, GABAA, GABAB.Abstract
Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter located in the mammalian central nervous system, which binds to GABAA and GABAB receptors to mediate its neurological effects. In addition to its role in the CNS, an increasing number of publications have suggested that GABA might also play a role in the regulation of renal function. All three enzymes associated with GABA metabolism; glutamic acid decarboxylase, GABA α-oxoglutarate transaminase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH) have been localised to the kidney providing the necessary machinery for localised GABA synthesis and metabolism. Moreover GABA receptors have been localised to both tubular and vascular structures in the kidney, and GABA is excreted in urine (~3 μM) in humans. Despite the collective evidence describing the presence of a GABA system in the kidney, the precise function of such a system requires further clarification. Here we provide an overview of the current renal GABA literature and provide novel data that indicates GABA can act at contractile pericyte cells located along vasa recta capillaries in the renal medulla to potentially regulate medullary blood flow.References
[1] Roberts E, Frankel S. Gamma-Aminobutyric acid in brain: its formation from glutamic acid. J Biol Chem 1950; 1: 55-63.
[2] Tanaka C. Gamma-Aminobutyric acid in peripheral tissues. Life Sci 1985; 24: 2221-2235. http://dx.doi.org/10.1016/0024-3205(85)90013-X
[3] Tillakaratne NJ, Medina-Kauwe L, Gibson KM. GammaAminobutyric acid (GABA) metabolism in mammalian neural and nonneural tissues. Comp Biochem Physiol A Physiol 1995; 2: 247-63.
[4] Barnard EA, Skolnick P, Olsen RW, et al. International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 1998; 2: 291- 313.
[5] Luscher B, Fuchs T, Kilpatrick CL. GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 2011; 3: 385-409. http://dx.doi.org/10.1016/j.neuron.2011.03.024
[6] Kaupmann K, Huggel K, Heid J, et al. Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature 1997; 6622: 239-46. http://dx.doi.org/10.1038/386239a0
[7] Marshall FH, Jones KA, Kaupmann K, Bettler B. GABAB receptors - the first 7TM heterodimers. Trends Pharmacol Sci 1999; 10: 396-9. http://dx.doi.org/10.1016/S0165-6147(99)01383-8
[8] Bartoi T, Rigbolt KT, Du D, Kohr G, Blagoev B, Kornau HC. GABAB receptor constituents revealed by tandem affinity purification from transgenic mice. J Biol Chem 2010; 27: 20625-20633. http://dx.doi.org/10.1074/jbc.M109.049700
[9] Schwenk J, Metz M, Zolles G, et al. Native GABA(B) receptors are heteromultimers with a family of auxiliary subunits. Nature 2010; 7295: 231-5. http://dx.doi.org/10.1038/nature08964
[10] Olsen R, DeLorey T. GABA Synthesis, Uptake and Release. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th ed. Philadelphia: Lippincott-Raven 1999 http://www.ncbi.nlm.nih.gov/books/NBK27979/
[11] Wilson WE, Hill RJ, Koeppe RE. The metabolism of gammaaminobutyric acid-4-C14 by intact rats. J Biol Chem 1959; 2: 347-9.
[12] Erdö S, Kiss B. Presence of GABA, glutamate decarboxylase, and GABA transaminase in peripheral tissues: a collection of quantitative data. GABAergic mechanisms in the mammalian periphery New York: Raven Press 1986; pp. 5-17.
[13] Del Rio RM. y-Aminobutyric acid system in rat oviduct. The Journal of Biological Chemistry 1981; 1: 9816-9.
[14] Erdö SL, Wolff JR. gamma-Aminobutyric acid outside the mammalian brain. J Neurochem 1990; 2: 363-72. http://dx.doi.org/10.1111/j.1471-4159.1990.tb01882.x
[15] Boldizsár HK, Wekerle L, Vén E, Sarlós P, Barna J. Neurotransmitter Amino Acids as Modulators of Biological Processes of Spermatozoa. In: Erdö S, editor. GABA Outside the CNS: Springer Berlin Heidelberg 1992; pp. 199-211. http://dx.doi.org/10.1007/978-3-642-76915-3_14
[16] Okada Y, Taniguchi H, Schimada C. High concentration of GABA and high glutamate decarboxylase activity in rat pancreatic islets and human insulinoma. Science 1976; 4265: 620-2. http://dx.doi.org/10.1126/science.185693
[17] Sorenson RL, Garry DG, Brelje TC. Structural and functional considerations of GABA in islets of Langerhans. Beta-cells and nerves. Diabetes 1991; 11: 1365-74. http://dx.doi.org/10.2337/diab.40.11.1365
[18] Oset-Gasque M, Castro E, Gonzalez MP. GABAergic Mechanisms in Bovine Adrenal Chromaffin Cells: Their Role in the Regulation of Catecholamine Secretion. In: Erdö S, editor. GABA Outside the CNS: Springer Berlin Heidelberg 1992; pp. 167-81. http://dx.doi.org/10.1007/978-3-642-76915-3_12
[19] Chambliss KL, Lee CF, Ogier H, Rabier D, Jakobs C, Gibson KM. Enzymatic and immunological demonstration of normal and defective succinic semialdehyde dehydrogenase activity in fetal brain, liver and kidney. J Inherit Metab Dis 1993; 3: 523-6. http://dx.doi.org/10.1007/BF00711671
[20] Ma N, Aoki E, Semba R. An immunohistochemical study of aspartate, glutamate, and taurine in rat kidney. J Histochem Cytochem 1994; 5: 621-6. http://dx.doi.org/10.1177/42.5.7908911
[21] Takano K, Yatabe MS, Abe A, et al. Characteristic Expressions of GABA Receptors and GABA Producing/Transporting Molecules in Rat Kidney. PLoS One 2014; 9: e105835. http://dx.doi.org/10.1371/journal.pone.0105835
[22] Parducz A, Dobo E, Wolff JR, Petrusz P, Erdo SL. GABAimmunoreactive structures in rat kidney. J Histochem Cytochem 1992; 5: 675-80. http://dx.doi.org/10.1177/40.5.1573248
[23] Goodyer PR, Mills M, Scriver CR. Properties of gammaaminobutyric acid synthesis by rat renal cortex. Biochim Biophys Acta 1982; 3: 348-57. http://dx.doi.org/10.1016/0304-4165(82)90027-7
[24] Lancaster G, Mohyuddin F, Scriver CR, Whelan DT. A - aminobutyrate pathway in mammalian kidney cortex. Biochim Biophys Acta 1973; 2: 229-40. http://dx.doi.org/10.1016/0304-4165(73)90069-X
[25] Lyon ML, Pitts RF. Species differences in renal glutamine synthesis in vivo. Am J Physiol 1969; 1: 117-22.
[26] Haber B, Kuriyama K, Roberts E. An anion stimulated lglutamic acid decarboxylase in non-neural tissues: Occurrence and subcellular localization in mouse kidney and developing chick embryo brain. Biochem Pharmacol 1970; 0: 1119-1136. http://dx.doi.org/10.1016/0006-2952(70)90373-4
[27] Alleyne GA. Renal metabolic response to acid-base changes. II. The early effects of metabolic acidosis on renal metabolism in the rat. J Clin Invest 1970; 5: 943-51. http://dx.doi.org/10.1172/JCI106314
[28] Erdö SL, Dobo E, Parducz A, Wolff JR. Releasable GABA in tubular epithelium of rat kidney. Experientia 1991; 3: 227-9.
[29] Pitts RF, Pilkington LA, MacLeod MB, Leal-Pinto E. Metabolism of glutamine by the intact functioning kidney of the dog. Studies in metabolic acidosis and alkalosis. J Clin Invest 1972; 3: 557-65.
[30] Hems DA. Metabolism of glutamine and glutamic acid by isolated perfused kidneys of normal and acidotic rats. Biochem J 1972; 3: 671-80.
[31] Nissim I, Yudkoff M, Segal S. Metabolic fate of glutamate carbon in rat renal tubules. Studies with 13C nuclear magnetic resonance and gas chromatography-mass spectrometry. Biochem J 1987; 2: 361-70.
[32] Goodyer PR, Lancaster G, Villeneuve M, Scriver CR. The relationship of 4-aminobutyric acid metabolism to ammoniagenesis in renal cortex. Biochim Biophys Acta 1980; 2: 191-200.
[33] Tursky T, Lassanova M, Pavlakovicova K. The effect of chronic acidosis on the activity of renal glutamate decarboxylase and GABA-transaminase. Bratisl Lek Listy 1994; 10: 469-74.
[34] Scriver CR, Whelan DT. Glutamic acid decarboxylase (GAD) in mammalian tissue outside the central nervous system, and its possible relevance to hereditary vitamin B6 dependency with seizures. Ann NY Acad Sci 1969; 1: 83-96.
[35] Whelan DT, Scriver CR, Mohyuddin F. Glutamic Acid Decarboxylase and Gamma-aminobutyric Acid in Mammalian Kidney. Nature 1969; 5222: 916-7. http://dx.doi.org/10.1038/224916a0
[36] Burgmeier N, Zawislak R, Defeudis FV, Bollack C, Helwig J. Glutamic acid decarboxylase in tubules and glomeruli isolated from rat kidney cortex. European Journal of Biochemistry 1985; 2: 361-4. http://dx.doi.org/10.1111/j.1432-1033.1985.tb09109.x
[37] Seiler N, Wiechmann M, Fischer HA, Werner G. The incorporation of putrescine carbon into -aminobutyric acid in rat liver and brain in vivo. Brain Res 1971; 2: 317-25. http://www.sciencedirect.com/science/article/pii/0006899371 906639
[38] Henningsson S, Rosengren E. The effect of nandrolone, an anabolic steroid on putrescine metabolism in the mouse. Br J Pharmacol 1976; 3: 401-6.
[39] Erdö SL. Peripheral GABAergic mechanisms. Trends Pharmacol Sci 1985; 0: 205-8. http://www.sciencedirect.com/science/article/pii/0165614785 900963
[40] Tillakaratne NJ, Erlander MG, Collard MW, Greif KF, Tobin AJ. Glutamate decarboxylases in nonneural cells of rat testis and oviduct: differential expression of GAD65 and GAD67. J Neurochem 1992; 2: 618-27.
[41] Faulkner-Jones BE, Cram DS, Kun J, Harrison LC. Localization and quantitation of expression of two glutamate decarboxylase genes in pancreatic beta-cells and other peripheral tissues of mouse and rat. Endocrinology 1993; 6: 2962-72.
[42] Tursk T, Bandzˇuchová E. An endogenous activator of renal glutamic acid decarboxylase. European Journal of Biochemistry 1999; 3: 696-703. http://dx.doi.org/10.1046/j.1432-1327.1999.00413.x
[43] Drummond RJ, Phillips AT. L-glutamic acid decarboxylase in non-neural tissues of the mouse. J Neurochem 1974; 6: 1207-13.
[44] Liu ZH, Striker LJ, Hattori M, Yang CW, Striker GE. Localization of glutamic acid decarboxylase in the kidneys of nonobese diabetic mice. Nephron 1996; 4: 662-6.
[45] Harrison LC, Honeyman MC, DeAizpurua HJ, Schmidli RS, Colman PG, Tait BD, et al. Inverse relation between humoral and cellular immunity to glutamic acid decarboxylase in subjects at risk of insulin-dependent diabetes. Lancet 1993; 8857: 1365-9.
[46] Wu JY, Denner LA, Wei SC, Lin CT, Song GX, Xu YF, et al. Production and characterization of polyclonal and monoclonal antibodies to rat brain L-glutamate decarboxylase. Brain Res 1986; 1-2: 1-14.
[47] White HL, Sato TL. GABA-transaminases of human brain and peripheral tissues--kinetic and molecular properties. J Neurochem 1978; 1: 41-7.
[48] Van Gelder NM. A possible enzyme barrier for gammaaminobutyric acid in the central nervous system. Prog Brain Res 1968: 259-71.
[49] Goodyer PR, Rozen R, Scriver CR. A gamma-aminobutyric acid-specific transport mechanism in mammalian kidney. Biochim Biophys Acta 1985; 1: 45-54.
[50] Sidhu HS, Wood JD. Gamma-Aminobutyric acid uptake by rat kidney brush-border membrane vesicles. Experientia 1989; 8: 726-8.
[51] Miyai A, Yamauchi A, Moriyama T, Kaneko T, Takenaka M, Sugiura T, et al. Expression of betaine transporter mRNA: its unique localization and rapid regulation in rat kidney. Kidney Int 1996; 3: 819-27.
[52] Zhou Y, Holmseth S, Hua R, Lehre AC, Olofsson AM, Poblete-Naredo I, et al. The betaine-GABA transporter (BGT1, slc6a12) is predominantly expressed in the liver and at lower levels in the kidneys and at the brain surface. Am J Physiol Renal Physiol 2012; 3: F316-28.
[53] Tallan HH, Moore S, Stein WH. Studies on the free amino acids and related compounds in the tissues of the cat. J Biol Chem 1954; 2: 927-39.
[54] Erdo SL, Wolff JR. gamma-Aminobutyric acid outside the mammalian brain. J Neurochem 1990; 2: 363-72.
[55] Amenta F, Cavallotti C, Iacopino L, Erdo SL. Autoradiographic localization of the GABAA receptor agonist [3H]-muscimol within rat kidney. Pharmacology 1988; 6: 390- 5.
[56] Sarang SS, Lukyanova SM, Brown DD, Cummings BS, Gullans SR, Schnellmann RG. Identification, coassembly, and activity of gamma-aminobutyric acid receptor subunits in renal proximal tubular cells. J Pharmacol Exp Ther 2008; 1: 376-82.
[57] Tyagi N, Lominadze D, Gillespie W, Moshal KS, Sen U, Rosenberger DS, et al. Differential expression of gammaaminobutyric acid receptor A (GABA(A)) and effects of homocysteine. Clin Chem Lab Med 2007; 12: 1777-84.
[58] Smith GB, Olsen RW. Functional domains of GABAA receptors. Trends Pharmacol Sci 1995; 5: 162-8.
[59] Sigel E, Buhr A. The benzodiazepine binding site of GABAA receptors. Trends Pharmacol Sci 1997; 11: 425-9.
[60] Ernst M, Brauchart D, Boresch S, Sieghart W. Comparative modeling of GABA(A) receptors: limits, insights, future developments. Neuroscience 2003; 4: 933-43.
[61] Ogris W, Poltl A, Hauer B, Ernst M, Oberto A, Wulff P, et al. Affinity of various benzodiazepine site ligands in mice with a point mutation in the GABAA receptor B2 subunit. Biochemical Pharmacology 2004; 8: 1621-9.
[62] Holmes PV, Drugan RC. Angiotensin II rapidly modulates the renal peripheral benzodiazepine receptor. Eur J Pharmacol 1992; 2: 189-90.
[63] Regan JW, Yamamura HI, Yamada S, Roeske WR. High affinity [3H]flunitrazepam binding: characterization, localization, and alteration in hypertension. Life Sci 1981; 9: 991-8. http://dx.doi.org/10.1016/0024-3205(81)90744-X
[64] Taniguchi T, Wang JK, Spector S. Changes in platelet and renal benzodiazepine binding in spontaneously hypertensive rats. Eur J Pharmacol1981; 4: 587-8.
[65] Thyagarajan R, Brennan T, Ticku MK. GABA and benzodiazepine binding sites in spontaneously hypertensive rat. Eur J Pharmacol 1983; 3-4: 127-36.
[66] Bribes E, Casellas P, Vidal H, Dussossoy D, Casellas D. Peripheral benzodiazepine receptor mapping in rat kidney. Effects of angiotensin II-induced hypertension. J Am Soc Nephrol 2002; 1: 1-9.
[67] Kunduzova OR, Escourrou G, De La Farge F, Salvayre R, Seguelas MH, Leducq N, et al. Involvement of peripheral benzodiazepine receptor in the oxidative stress, deathsignaling pathways, and renal injury induced by ischemiareperfusion. J Am Soc Nephrol 2004; 8: 2152-60. http://dx.doi.org/10.1097/01.ASN.0000133563.41148.74
[68] Erdo SL. Baclofen binding sites in rat kidney. Eur J Pharmacol 1990; 2-3: 305-9.
[69] Sarang SS, Plotkin MD, Gullans SR, Cummings BS, Grant DF, Schnellmann RG. Identification of the gammaaminobutyric acid receptor beta(2) and beta(3) subunits in rat, rabbit, and human kidneys. J Am Soc Nephrol 2001; 6: 1107-13.
[70] Monasterolo LA, Trumper L, Elias MM. Effects of gammaaminobutyric acid agonists on the isolated perfused rat kidney. J Pharmacol Exp Ther 1996; 2: 602-7.
[71] Donato V, Pisani GB, Trumper L, Monasterolo LA. Effects of “in vivo” administration of baclofen on rat renal tubular function. Eur J Pharmacol 2013; 1-3: 117-122. http://www.sciencedirect.com/science/article/pii/S001429991 3004603
[72] Fujimura S, Shimakage H, Tanioka H, Yoshida M, SuzukiKusaba M, Hisa H, et al. Effects of GABA on noradrenaline release and vasoconstriction induced by renal nerve stimulation in isolated perfused rat kidney. Br J Pharmacol 1999; 1: 109-14. http://dx.doi.org/10.1038/sj.bjp.0702524
[73] Hayakawa K, Kimura M, Kamata K. Mechanism underlying gamma-aminobutyric acid-induced antihypertensive effect in spontaneously hypertensive rats. Eur J Pharmacol 2002; 1-2: 107-13.
[74] Sasaki S, Lee LC, Nakamura Y, Iyota I, Fukuyama M, Inoue A, et al. Hypotension and hypothalamic depression produced by intracerebroventricular injections of GABA in spontaneously hypertensive rats. Jpn Circ J 1986; 11: 1140- 8. http://dx.doi.org/10.1253/jcj.50.1140.
[75] Li DP, Pan HL. Role of gamma-aminobutyric acid (GABA)A and GABAB receptors in paraventricular nucleus in control of sympathetic vasomotor tone in hypertension. J Pharmacol Exp Ther 2007; 2: 615-26.
[76] Unger T, Becker H, Dietz R, Ganten D, Lang RE, Rettig R, et al. Antihypertensive effect of the GABA receptor agonist muscimol in spontaneously hypertensive rats. Role of the sympathoadrenal axis. Circ Res 1984; 1: 30-7. http://dx.doi.org/10.1161/01.RES.54.1.30
[77] Antonaccio MJ, Taylor DG. Involvement of central GABA receptors in the regulation of blood pressure and heart rate of anesthetized cats. Eur J Pharmacol 1977; 3: 283-7.
[78] Antonaccio MJ, Kerwin L, Taylor DG. Reductions in blood pressure, heart rate and renal sympathetic nerve discharge in cats after the central administration of muscimol, a GABA agonist. Neuropharmacology 1978; 10: 783-91. http://dx.doi.org/10.1016/0028-3908(78)90065-5
[79] Williford DJ, Hamilton BL, Souza JD, Williams TP, DiMicco JA, Gillis RA. Central nervous system mechanisms involving GABA influence arterial pressure and heart rate in the cat. Circ Res 1980; 1: 80-8. http://dx.doi.org/10.1161/01.RES.47.1.80
[80] Roberts KA, Wright JW, Harding JW. GABA and bicucullineinduced blood pressure changes in spontaneously hypertensive rats. J Cardiovasc Pharmacol 1993; 1: 156-162. http://dx.doi.org/10.1097/00005344-199301000-00023
[81] Li B, Liu Q, Xuan C, Guo L, Shi R, Zhang Q, et al. GABAB receptor gene transfer into the nucleus tractus solitarii induces chronic blood pressure elevation in normotensive rats. Circ J 2013; 10: 2558-66. http://dx.doi.org/10.1253/circj.CJ-13-0305
[82] Kim HY, Yokozawa T, Nakagawa T, Sasaki S. Protective effect of gamma-aminobutyric acid against glycerol-induced acute renal failure in rats. Food Chem Toxicol 2004; 12: 2009-14. http://dx.doi.org/10.1016/j.fct.2004.06.021
[83] Kobuchi S, Shintani T, Sugiura T, Tanaka R, Suzuki R, Tsutsui H, et al. Renoprotective effects of -aminobutyric acid on ischemia/reperfusion-induced renal injury in rats. Eur J Pharmacol 2009; 1-3: 113-118. http://www.sciencedirect.com/science/article/pii/S001429990 9007894
[84] Ali BH, Al-Salam S, Al Za'abi M, Al Balushi KA, AlMahruqi AS, Beegam S, et al. Renoprotective Effects of GammaAminobutyric Acid on Cisplatin-induced Acute Renal Injury in Rats. Basic Clin Pharmacol Toxicol 2014. http://dx.doi.org/10.1111/bcpt.12291
[85] Sasaki S, Tohda C, Kim M, Yokozawa T. Gammaaminobutyric acid specifically inhibits progression of tubular fibrosis and atrophy in nephrectomized rats. Biol Pharm Bull 2007; 4: 687-91.
[86] Doengi M, Hirnet D, Coulon P, Pape HC, Deitmer JW, Lohr C. GABA uptake-dependent Ca(2+) signaling in developing olfactory bulb astrocytes. Proc Natl Acad Sci USA 2009; 41: 17570-5.
[87] Fujiwara M, Muramatsu I, Shibata S. Gamma-aminobutyric acid receptor on vascular smooth muscle of dog cerebral arteries. Br J Pharmacol 1975; 4: 561-2. http://dx.doi.org/10.1111/j.1476-5381.1975.tb07434.x
[88] Takemoto Y. Hindquarters vasoconstriction through central GABA(B) receptors in conscious rats. Exp Physiol 2003; 4: 491-6.
[89] Anwar N, Mason DFJ. Two actions of Gamma-aminobutyric acid on the responses of the isolated basilar artery from the rabbit. Br J Pharmacol 1982; 1: 177-181. http://dx.doi.org/10.1111/j.1476-5381.1982.tb08770.x
[90] Sims DE. The pericyte--a review. Tissue Cell 1986; 2: 153- 74.
[91] Pallone TL, Silldorff EP, Turner MR. Intrarenal blood flow: microvascular anatomy and the regulation of medullary perfusion. Clin Exp Pharmacol Physiol 1998; 6: 383-92.
[92] Pallone TL, Silldorff EP. Pericyte regulation of renal medullary blood flow. Exp Nephrol 2001; 3: 165-70.
[93] Shepro D, Morel NM. Pericyte physiology. FASEB J 1993; 11: 1031-8.
[94] Hirschi KK, D'Amore PA. Pericytes in the microvasculature. Cardiovasc Res 1996; 4: 687-98.
[95] Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 2005; 4: 452-64.
[96] Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature 2006; 7112: 700-4.
[97] Crawford C, Kennedy-Lydon TM, Callaghan H, Sprott C, Simmons RL, Sawbridge L, et al. Extracellular nucleotides affect pericyte-mediated regulation of rat in situ vasa recta diameter. Acta Physiol (Oxf) 2011; 3: 241-51.
[98] Crawford C, Kennedy-Lydon T, Sprott C, Desai T, Sawbridge L, Munday J, et al. An intact kidney slice model to investigate vasa recta properties and function in situ. Nephron Physiol 2012; 3: p17-31.
[99] Peppiatt-Wildman CM. The evolving role of renal pericytes. Curr Opin Nephrol Hypertens 2013; 1: 10-16.