Statins in Research Studies: Selection of Statin, Concentrations, Animal Model, and Cell Line

Authors

  • Yasin Ahmadi Komar University of Science and Technology, College of Science, Department of Medical Laboratory Science, Sulaymaniyah, Kurdistan Region, Iraq
  • Rand Abbas Komar University of Science and Technology, Faculty of Medicine, Department of Pharmacy, Sulaymaniyah, Kurdistan Region, Iraq
  • Shkak Aso Komar University of Science and Technology, Faculty of Medicine, Department of Pharmacy, Sulaymaniyah, Kurdistan Region, Iraq
  • Sara Ata Komar University of Science and Technology, Faculty of Medicine, Department of Pharmacy, Sulaymaniyah, Kurdistan Region, Iraq
  • Ashtivan Fadheel Komar University of Science and Technology, Faculty of Medicine, Department of Pharmacy, Sulaymaniyah, Kurdistan Region, Iraq
  • Khuncha Sardar Komar University of Science and Technology, Faculty of Medicine, Department of Pharmacy, Sulaymaniyah, Kurdistan Region, Iraq
  • Javad Khalili Fard Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Keywords:

Animal model, research design, pleiotropic effects, statins

Abstract

Statins are prescribed for treating hypercholesterolemia. In addition to their cholesterol-lowering effects statins produce a wide variety of effects known as the pleiotropic effects across various cells including cancerous and non-cancerous cells. These effects have been extensively studied in different animal models, particularly rodents (rats and mice) and rabbits.

The diverse effects of statins have aroused considerable controversy. Many of these discrepancies stem from the research study design, such as the type of statins, their concentrations/doses, and animal models or cell lines in use. Notably, different concentrations of statin have been shown to yield paradoxical outcomes. For instance, at higher concentrations, statins provoke apoptosis and senescence in endothelial cells, whereas lower concentrations protect these cells from apoptosis and senescence.

These adverse findings may arise from the differences in the pharmaceutical properties of statins, the applied concentrations/doses, the type of animal models, or the specific cell lines used in research studies. Therefore, it is crucial to exactly consider these variables in the statins’ studies. In this article, we aim to provide an overview of the criteria for selecting appropriate statins, proper concentrations/doses, and the type of animal models or cell types to achieve the most accurate results in the statins’ studies.

References

Delbosc S, Morena M, Djouad F, Ledoucen C, Descomps B, Cristol JP. Statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, are able to reduce superoxide anion production by NADPH oxidase in THP-1-derived monocytes. J Cardiovasc Pharmacol 2002; 40: 611-617. https://doi.org/10.1097/00005344-200210000-00015

Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009; 9: 798-809. https://doi.org/10.1038/nrc2734

Wassmann S, Laufs U, Bäumer AT, Müller K, Konkol C, Sauer H, Böhm M, Nickenig G. Inhibition of geranylgeranylation reduces angiotensin II-mediated free radical production in vascular smooth muscle cells: involvement of angiotensin AT1 receptor expression and Rac1 GTPase. Mol Pharmacol 2001; 59: 646-65. https://doi.org/10.1124/mol.59.3.646

Kellick KA, Bottorff M, Toth PP. A clinician’s guide to statin drug-drug interactions. J Clin Lipidol 2014; 8: 30-46. https://doi.org/10.1016/j.jacl.2014.02.010

Sirtori CR. The pharmacology of statins. Pharmacol Res 2014; 88: 3-11. https://doi.org/10.1016/j.phrs.2014.03.002

Wong WWL, Dimitroulakos J, Minden MD, Penn LZ. HMG-CoA reductase inhibitors and the malignant cell: the statin family of drugs as triggers of tumor-specific apoptosis. Leukemia 2002; 16: 508. https://doi.org/10.1038/sj.leu.2402476

Shitara Y, Sugiyama Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther 2006; 112: 71-105. https://doi.org/10.1016/j.pharmthera.2006.03.003

Ahmadi Y, Haghjoo AG, Dastmalchi S, Nemati M, Bargahi N. Effects of Rosuvastatin on the expression of the genes involved in cholesterol metabolism in rats: adaptive responses by extrahepatic tissues. Gene 2018; 661: 45-50. https://doi.org/https://doi.org/10.1016/j.gene.2018.03.092

Ogata Y, Takahashi M, Takeuchi K, Ueno S, Mano H, Ookawara S, Kobayashi E, Ikeda U, Shimada K. Fluvastatin induces apoptosis in rat neonatal cardiac myocytes: a possible mechanism of statin-attenuated cardiac hypertrophy. J Cardiovasc Pharmacol 2002; 40: 907-915. https://doi.org/10.1097/00005344-200212000-00012

Hodel C. Myopathy and rhabdomyolysis with lipid-lowering drugs. Toxicol Lett 2002; 128: 159-168. https://doi.org/10.1016/S0378-4274(02)00010-3

Thompson PD, Clarkson P, Karas RH: Statin-associated myopathy. JAMA 2003; 289: 1681-1690. https://doi.org/10.1001/jama.289.13.1681

Sacher J, Weigl L, Werner M, Szegedi C, Hohenegger M: Delineation of myotoxicity induced by 3-hydroxy-3-methylglutaryl CoA reductase inhibitors in human skeletal muscle cells. Journal of Pharmacology and Experimental Therapeutics 2005; 314: 1032-1041. https://doi.org/10.1124/jpet.105.086462

Blanco-Colio LM, Villa A, Ortego M, Hernández-Presa MA, Pascual A, Plaza JJ, Egido J. 3-Hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitors, atorvastatin and simvastatin, induce apoptosis of vascular smooth muscle cells by downregulation of Bcl-2 expression and Rho A prenylation. Atherosclerosis 2002; 161: 17-26. https://doi.org/10.1016/S0021-9150(01)00613-X

Demyanets S, Kaun C, Pfaffenberger S, Hohensinner PJ, Rega G, Pammer J, Maurer G, Huber K, Wojta J. Hydroxymethylglutaryl-coenzyme A reductase inhibitors induce apoptosis in human cardiac myocytes in vitro. Biochem Pharmacol 2006; 71: 1324-1330. https://doi.org/10.1016/j.bcp.2006.01.016

Ahmadi Y, Ghorbanihaghjo A, Argani H. The effect of statins on the organs: similar or contradictory? J Cardiovasc Thorac Res 2017; 9: 64-70. https://doi.org/10.15171/jcvtr.2017.11

Ahmadi Y, Mahmoudi N, Yousefi B, Karimian A. The effects of statins with a high hepatoselectivity rank on the extra-hepatic tissues; New functions for statins. Pharmacol Res 2020; 152: 104-621. https://doi.org/https://doi.org/10.1016/j.phrs.2019.104621

Schachter M. Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam Clin Pharmacol 2005; 19: 117-125. https://doi.org/10.1111/j.1472-8206.2004.00299.x

Kellick K, Saseen JJ. Pharmacology of Statins. In: Therapeutic Lipidology. Springer 2021; pp. 191-205. https://doi.org/10.1007/978-3-030-56514-5_11

Althanoon Z, Faisal IM, Ahmad AA, Merkhan MM, Merkhan MM. Pharmacological Aspects of Statins Are Relevant to Their Structural and Physicochemical Properties. Systematic Reviews in Pharmacy 2020; (11): 167-171.

Germershausen JI, Hunt VM, Bostedor RG, Bailey PJ, Karkas JD, Alberts AW. Tissue selectivity of the cholesterol-lowering agents lovastatin, simvastatin and pravastatin in rats in vivo. Biochem Biophys Res Commun. 1989; (158): 667-675. https://doi.org/10.1016/0006-291X(89)92773-3

Lennernäs H. Clinical pharmacokinetics of atorvastatin. Clin Pharmacokinet 2003; (42): 1141-1160. https://doi.org/10.2165/00003088-200342130-00005

Niemi M. Transporter pharmacogenetics and statin toxicity. Clin Pharmacol Ther 2010; (87): 130-133. https://doi.org/10.1038/clpt.2009.197

Lau YY, Huang Y, Frassetto L, Benet LZ. Effect of OATP1B transporter inhibition on the pharmacokinetics of atorvastatin in healthy volunteers. Clin Pharmacol Ther 2007; (81): 194-204. https://doi.org/10.1038/sj.clpt.6100038

Choudhary A, Rana AC, Aggarwal G, Kumar V, Zakir F. Development and characterization of an atorvastatin solid dispersion formulation using skimmed milk for improved oral bioavailability. Acta Pharm Sin B 2012; 2: 421-428. https://doi.org/10.1016/j.apsb.2012.05.002

Martin PD, Warwick MJ, Dane AL, Hill SJ, Giles PB, Phillips, PJ, Lenz E. Metabolism, excretion, and pharmacokinetics of rosuvastatin in healthy adult male volunteers. Clin Ther 2003; 25: 2822-2835. https://doi.org/10.1016/j.apsb.2012.05.002

Bowman CM, Ma F, Mao J, Chen Y. Examination of physiologically‐based pharmacokinetic models of rosuvastatin. CPT Pharmacometrics Syst Pharmacol 2021; 10: 5-17. https://doi.org/10.1002/psp4.12571

Martin PD, Warwick MJ, Dane AL, Brindley C, Short T. Absolute oral bioavailability of rosuvastatin in healthy white adult male volunteers. Clin Ther 2003; 25: 2553-2563. https://doi.org/10.1016/S0149-2918(03)80316-8

Ho RH, Tirona RG, Leake BF, Glaeser H, Lee W, Lemke C.J., Wang Y, Kim RB. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 2006; 130: 1793-1806. https://doi.org/10.1053/j.gastro.2006.02.034

Mukhta RYA, Reid J, Reckless JPD. Pitavastatin. Int J Clin Pract 2005; 59 : 239-252. https://doi.org/10.1111/j.1742-1241.2005.00461.x

Catapano, A.L. Pitavastatin-pharmacological profile from early phase studies. Atheroscler Suppl 2010; 11: 3-7. https://doi.org/10.1016/S1567-5688(10)71063-1

Fujino H, Yamada I, Shimada S, Yoneda M, Kojima J. Metabolic fate of pitavastatin, a new inhibitor of HMG-CoA reductase: human UDP-glucuronosyltransferase enzymes involved in lactonization. Xenobiotica 2003; 33: 27-41. https://doi.org/10.1080/0049825021000017957

Hirano M, Maeda K, Shitara Y, Sugiyama Y. Contribution of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the hepatic uptake of pitavastatin in humans. Journal of Pharmacology and Experimental Therapeutics 2004; 311: 139-146. https://doi.org/10.1124/jpet.104.068056

Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol 2009: 158: 693-705. https://doi.org/10.1111/j.1476-5381.2009.00430.x

Vickers S, Duncan CA, Chen IW, Rosegay A, Duggan DE. Metabolic disposition studies on simvastatin, a cholesterol-lowering prodrug. Drug Metabolism and Disposition. 1990; 18: 138-145.

Bove M, Fogacci F, Cicero AFG. Pharmacokinetic drug evaluation of ezetimibe+ simvastatin for the treatment of hypercholesterolemia. Expert Opin Drug Metab Toxicol 2017: 130; 1099-1104. https://doi.org/10.1080/17425255.2017.1381085

Robinson JG. Simvastatin: present and future perspectives. Expert Opin Pharmacother 2007; 8: 2127-2159. https://doi.org/10.1517/14656566.8.13.2159

Climent Biescas E, Benaiges Foix D, Pedro-Botet JC. Hydrophilic or lipophilic statins? Front Cardiovasc Med 2021; 8: 687585. https://doi.org/10.3389/fcvm.2021.687585

Francis LS, Nickerson DF, Yardley WS. Binding of fluvastatin to blood cells and plasma proteins. J Pharm Sci. 1993; 82; 942-947. https://doi.org/10.1002/jps.2600820914

Barilla D, Prasad P, Hubert M, Gumbhir‐Shah K. Steady‐state pharmacokinetics of fluvastatin in healthy subjects following a new extended release fluvastatin tablet, Lescol® XL. Biopharm Drug Dispos 2004; 25: 51-59. https://doi.org/10.1002/bdd.378

Caris JA, de Lima Benzi JR, de Souza FFL, de Oliveira, RDR, Donadi EA, Lanchote VL. Rheumatoid arthritis downregulates the drug transporter OATP1B1: fluvastatin as a probe. European Journal of Pharmaceutical Sciences 2020; 146: 105-264. https://doi.org/10.1016/j.ejps.2020.105264

Quion JAV, Jones PH. Clinical pharmacokinetics of pravastatin. Clin Pharmacokinet. 1994; 27: 94-103. https://doi.org/10.2165/00003088-199427020-00002

Hatanaka T. Clinical pharmacokinetics of pravastatin: mechanisms of pharmacokinetic events. Clin Pharmacokinet 2000; 39: 397-412. https://doi.org/10.2165/00003088-200039060-00002

Pan HY. Clinical pharmacology of pravastatin, a selective inhibitor of HMG-CoA reductase. Eur J Clin Pharmacol. 1991; 40; 15-18. https://doi.org/10.1007/BF03216282

Kivistö KT, Niemi M. Influence of drug transporter polymorphisms on pravastatin pharmacokinetics in humans. Pharm Res 2007; 24: 239-247. https://doi.org/10.1007/s11095-006-9159-2

Pan HY, DeVault AR, Wang‐Iverson D, Ivashkiv E, Swanson BN, Sugerman AA. Comparative pharmacokinetics and pharmacodynamics of pravastatin and lovastatin. The Journal of Clinical Pharmacology. 1990; 30: 1128-1135. https://doi.org/10.1002/j.1552-4604.1990.tb01856.x

Ferri N, Corsini A. Clinical pharmacology of statins: an update. Curr Atheroscler Rep 2020; 22: 1-9. https://doi.org/10.1007/s11883-020-00844-w

Goedeke L, Canfrán-Duque A, Rotllan N, Chaube B, Thompson BM, Lee RG, Cline GW, McDonald JG, Shulman GI, Lasunción MA. MMAB promotes negative feedback control of cholesterol homeostasis. Nat Commun 2021; 12: 6448. https://doi.org/10.1038/s41467-021-26787-7

Brown A.J. Cholesterol, statins and cancer. Clin Exp Pharmacol Physiol 2007; 34: 135-14. https://doi.org/10.1111/j.1440-1681.2007.04565.x

Duncan RE, El-Sohemy A, Archer MC. Statins and the risk of cancer. JAMA 2006; 295: 2720-2722. https://doi.org/10.1001/jama.295.23.2720-a

Ahmadi Y, Ghorbanihaghjo A, Argani H. The balance between induction and inhibition of mevalonate pathway regulates cancer suppression by statins: A review of molecular mechanisms. Chem Biol Interact 2017; 273: 273-285. https://doi.org/10.1016/j.cbi.2017.06.026

Emini Veseli B, Perrotta P, De Meyer GRA, Roth L, Van der Donckt C, Martinet W, De Meyer GRY. Animal models of atherosclerosis. Eur J Pharmacol 2017; 816: 3-13. https://doi.org/https://doi.org/10.1016/j.ejphar.2017.05.010

Fan J, Kitajima S, Watanabe T, Xu J, Zhang J, Liu E, Chen YE. Rabbit models for the study of human atherosclerosis: from pathophysiological mechanisms to translational medicine. Pharmacol Ther 2015; 146: 104-119. https://doi.org/10.1016/j.pharmthera.2014.09.009

Mabuchi H, Nohara A, Inazu A. Cholesteryl ester transfer protein (CETP) deficiency and CETP inhibitors. Mol Cells 2014; 37: 777. https://doi.org/10.14348/molcells.2014.0265

Barter P. CETP and atherosclerosis, 2000. https://doi.org/10.1161/01.ATV.20.9.2029

Endo A. A historical perspective on the discovery of statins. Proc Jpn Acad Ser B Phys Biol Sci 2010; 86: 484-493. https://doi.org/10.2183/pjab.86.484

Tobert JA. Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nat Rev Drug Discov 2003; 2: 517-526. https://doi.org/10.1038/nrd1112

Baetta R, Donetti E, Comparato C, Calore M, Rossi A, Teruzzi C, Paoletti R, Fumagalli R, Soma MR. Proapoptotic effect of atorvastatin on stimulated rabbit smooth muscle cells. Pharmacol Res. 1997; 36: 115-121. https://doi.org/10.1006/phrs.1997.0211

Chowaniec Z, Skoczyńska A. Plasma lipid transfer proteins: The role of PLTP and CETP in atherogenesis. Advances in Clinical & Experimental Medicine. 27, (2018). https://doi.org/10.17219/acem/67968

Yin W, Carballo-Jane E, McLaren DG, Mendoza VH, Gagen K, Geoghagen NS, McNamara LA, Gorski JN, Eiermann GJ, Petrov A. Plasma lipid profiling across species for the identification of optimal animal models of human dyslipidemia [S]. J Lipid Res 2012; 53: 51-65. https://doi.org/10.1194/jlr.M019927

Schonewille M, de Boer JF, Mele L, Wolters H, Bloks VW, Wolters JC, Kuivenhoven JA, Tietge UJF, Brufau G, Groen AK. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice. J Lipid Res 2016; 57: 1455-1464. https://doi.org/10.1194/jlr.M067488

Mariotti M, Maier JAM. Angiogenesis: an overview. New frontiers in angiogenesis 2006; 1: 1-29. https://doi.org/10.1007/1-4020-4327-9_1

Björkhem‐Bergman L, Lindh JD, Bergman P. What is a relevant statin concentration in cell experiments claiming pleiotropic effects? Br J Clin Pharmacol 2011; 72: 164-165. https://doi.org/10.1111/j.1365-2125.2011.03907.x

Elewa HF, El‐Remessy AB, Somanath PR, Fagan SC. Diverse effects of statins on angiogenesis: new therapeutic avenues. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 2010; 30: 169-176. https://doi.org/10.1592/phco.30.2.169

Endres M. Statins and stroke. Journal of Cerebral Blood Flow & Metabolism 2005; 25: 1093-1110. https://doi.org/10.1038/sj.jcbfm.9600116

Liao JK. Beyond lipid lowering: the role of statins in vascular protection. Int J Cardiol 2002; 86: 5-18. https://doi.org/10.1016/S0167-5273(02)00195-X

Park HJ, Kong D, Iruela-Arispe L, Begley U, Tang D, Galper JB. 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors interfere with angiogenesis by inhibiting the geranylgeranylation of RhoA. Circ Res 2002; 91: 143-150. https://doi.org/10.1161/01.RES.0000028149.15986.4C

Dulak J, Loboda A, Jazwa A, Zagorska A, Dörler J, Alber H, Dichtl W, Weidinger F, Frick M, Jozkowicz A. Atorvastatin affects several angiogenic mediators in human endothelial cells. Endothelium 2005; 12: 233-241. https://doi.org/10.1080/10623320500476559

Urbich C, Dernbach E, Zeiher AM, Dimmeler S. Double-edged role of statins in angiogenesis signaling. Circ Res 2002; 90: 737-744. https://doi.org/10.1161/01.RES.0000014081.30867.F8

Gueler F, Park JK, Rong S, Kirsch T, Lindschau C, Zheng W, Elger M, Fiebeler A, Fliser D, Luft FC. Statins attenuate ischemia-reperfusion injury by inducing heme oxygenase-1 in infiltrating macrophages. Am J Pathol 2007; 170: 1192-1199. https://doi.org/10.2353/ajpath.2007.060782

Katsumoto M, Shingu T, Kuwashima R, Nakata A, Nomura S, Chayama K. Biphasic effect of HMG-CoA reductase inhibitor, pitavastatin, on vascular endothelial cells and angiogenesis. Circulation Journal 2005; 69: 1547-1555. https://doi.org/10.1253/circj.69.1547

Ota H, Eto M, Kano MR, Kahyo T, Setou M, Ogawa S, Iijima K, Akishita M, Ouchi Y. Induction of endothelial nitric oxide synthase, SIRT1, and catalase by statins inhibits endothelial senescence through the Akt pathway. Arterioscler Thromb Vasc Biol 2010; 30: 2205-2211. https://doi.org/10.1161/ATVBAHA.110.210500

Mutoh T, Kumano T, Nakagawa H, Kuriyama M. Involvement of tyrosine phosphorylation in HMG‐CoA reductase inhibitor‐induced cell death in L6 myoblasts. FEBS Lett. 1999; 444: 85-89. https://doi.org/10.1016/S0014-5793(99)00031-9

Undas A, Celinska-Lowenhof M, St pien E, Nizankowski R, Tracz W, Szczeklik A. Effects of simvastatin on angiogenic growth factors released at the site of microvascular injury. THROMBOSIS AND HAEMOSTASIS-STUTTGART- 2006; 95: 1045. https://doi.org/10.1160/TH06-01-0022

Xia Ma F, Han ZC. Statins, nitric oxide and neovascularization. Cardiovasc Drug Rev 2005; 23: 281-292. https://doi.org/10.1111/j.1527-3466.2005.tb00173.x

Ahmadi Y, Fard JK, Ghafoor D, Eid AH, Sahebkar A. Paradoxical effects of statins on endothelial and cancer cells: the impact of concentrations. Cancer Cell Int 2023; 23: 1-13. https://doi.org/10.1186/s12935-023-02890-1

Wood WG, Igbavboa U, Muller WE, Eckert GP. Statins, Bcl-2, and apoptosis: cell death or cell protection? Mol Neurobiol 2013; 48: 308-314. https://doi.org/10.1007/s12035-013-8496-5

Yu R, Longo J, van Leeuwen JE, Mullen PJ, Ba-Alawi W, Haibe-Kains B, Penn LZ. Statin-induced cancer cell death can be mechanistically uncoupled from prenylation of RAS family proteins. Cancer Res 2018; 78: 1347-1357. https://doi.org/10.1158/0008-5472.CAN-17-1231

O’Grady S, Crown J, Duffy MJ. Anti-tumor effects of statins in triple-negative breast cancer: Apoptosis, chemosensitization and degradation of mutant-p53, 2020. https://doi.org/10.1158/1538-7445.AM2020-1775

Mirzaei A, Rashedi S, Akbari MR, Khatami F, Aghamir SMK. Combined anticancer effects of simvastatin and arsenic trioxide on prostate cancer cell lines via downregulation of the VEGF and OPN isoforms genes. J Cell Mol Med 2022. https://doi.org/10.1111/jcmm.17286

Trogden KP, Battaglia RA, Kabiraj P, Madden VJ, Herrmann H, Snider NT. An image‐based small‐molecule screen identifies vimentin as a pharmacologically relevant target of simvastatin in cancer cells. The FASEB Journal 2018; 32: 2841-2854. https://doi.org/10.1096/fj.201700663R

Putra B, Wahyuningsih MSH, Sholikhah EN. Cytotoxic activity of simvastatin in T47D breast cancer cell lines and its effect on cyclin D1 expression and apoptosis. J Med Sci 2017; 49: 47-55. https://doi.org/10.19106/JMedSci004902201701

Warita K, Warita T, Beckwitt CH, Schurdak ME, Vazquez A, Wells A, Oltvai ZN. Statin-induced mevalonate pathway inhibition attenuates the growth of mesenchymal-like cancer cells that lack functional E-cadherin mediated cell cohesion. Sci Rep 2014; 4: 1-8. https://doi.org/10.1038/srep07593

Luttman JH, Hoj JP, Lin KH, Lin J, Gu JJ, Rouse C, Nichols AG, MacIver NJ, Wood KC, Pendergast AM. ABL allosteric inhibitors synergize with statins to enhance apoptosis of metastatic lung cancer cells. Cell Rep 2021; 37: 109-880. https://doi.org/https://doi.org/10.1016/j.celrep.2021.109880

Levine BD, Cagan RL. Drosophila Lung Cancer Models Identify Trametinib plus Statin as Candidate Therapeutic. Cell Rep 2016; 14: 1477-1487. https://doi.org/https://doi.org/10.1016/j.celrep.2015.12.105

Zhong WB, Wang CY, Chang TC, Lee WS. Lovastatin induces apoptosis of anaplastic thyroid cancer cells via inhibition of protein geranylgeranylation and de novo protein synthesis. Endocrinology 2003; 144: 3852-3859. https://doi.org/10.1210/en.2003-0098

Fromigue O, Hay E, Modrowski D, Bouvet S, Jacquel A, Auberger P, Marie PJ. RhoA GTPase inactivation by statins induces osteosarcoma cell apoptosis by inhibiting p42/p44-MAPKs-Bcl-2 signaling independently of BMP-2 and cell differentiation. Cell Death Differ 2006; 13: 1845. https://doi.org/10.1038/sj.cdd.4401873

Lee J, Lee I, Park C, Kang WK. Lovastatin-induced RhoA modulation and its effect on senescence in prostate cancer cells. Biochem Biophys Res Commun 2006; 339: 748-754. https://doi.org/https://doi.org/10.1016/j.bbrc.2005.11.075

Palaniswamy C, Selvaraj DR, Selvaraj T, Sukhija R. Mechanisms underlying pleiotropic effects of statins. Am J Ther 2010; 17: 75-78. https://doi.org/10.1097/MJT.0b013e31819cdc86

Murtola TJ, Syvälä H, Pennanen P, Bläuer M, Solakivi T, Ylikomi T, Tammela TLJ. Comparative effects of high and low-dose simvastatin on prostate epithelial cells: the role of LDL. Eur J Pharmacol 2011; 673: 96-100. https://doi.org/10.1016/j.ejphar.2011.10.022

Spampanato C, De Maria S, Sarnataro M, Giordano E, Zanfardino M, Baiano S, Cartenì M, Morelli F. Simvastatin inhibits cancer cell growth by inducing apoptosis correlated to activation of Bax and down-regulation of BCL-2 gene expression. Int J Oncol 2012; 40; 935-941. https://doi.org/10.3892/ijo.2011.1273

Koyuturk M, Ersoz M, Altiok N. Simvastatin induces proliferation inhibition and apoptosis in C6 glioma cells via c-jun N-terminal kinase. Neurosci Lett 2004; 370: 212-217. https://doi.org/10.1016/j.neulet.2004.08.020

Pecoraro V, Moja L, Dall’Olmo L, Cappellini G, Garattini S. Most appropriate animal models to study the efficacy of statins: a systematic review. Eur J Clin Invest 2014; 44: 848-87. https://doi.org/10.1111/eci.12304

Cattori V, Hagenbuch B, Hagenbuch N, Stieger B, Ha R, Winterhalter KE, Meier PJ. Identification of organic anion transporting polypeptide 4 (Oatp4) as a major full‐length isoform of the liver‐specific transporter‐1 (rlst‐1) in rat liver. FEBS Lett 2000; 474: 242-245. https://doi.org/10.1016/S0014-5793(00)01596-9

Cattori V, Montfoort JE, Stieger B, Landmann L, Meijer DK, Winterhalter KH, Meier PJ, Hagenbuch B. Localization of organic anion transporting polypeptide 4 (Oatp4) in rat liver and comparison of its substrate specificity with Oatp1, Oatp2 and Oatp3. Pflügers Archiv 2001; 443: 188-195. https://doi.org/10.1007/s004240100697

Kakyo M, Unno M, Tokui T, Nakagomi R, Nishio T, Iwasashi H, Nakai D, Seki M, Suzuki M, Naitoh T. Molecular characterization and functional regulation of a novel rat liver-specific organic anion transporter rlst-1. Gastroenterology. 1999; 117: 770-775. https://doi.org/10.1016/S0016-5085(99)70333-1

Ogura K, Choudhuri S, Klaassen CD. Full-length cDNA cloning and genomic organization of the mouse liver-specific organic anion transporter-1 (lst-1). Biochem Biophys Res Commun 2000; 272: 563-570. https://doi.org/10.1006/bbrc.2000.2830

Takahashi T, Uno Y, Yamazaki H, Kume T. Functional characterization for polymorphic organic anion transporting polypeptides (OATP/SLCO1B1, 1B3, 2B1) of monkeys recombinantly expressed with various OATP probes. Biopharm Drug Dispos 2019; 40: 62-69. https://doi.org/10.1002/bdd.2171

Lu, C., Li, A.P. Species comparison in P450 induction: effects of dexamethasone, omeprazole, and rifampin on P450 isoforms 1A and 3A in primary cultured hepatocytes from man, Sprague-Dawley rat, minipig, and beagle dog. Chem Biol Interact 2001; 134: 271-281. https://doi.org/10.1016/S0009-2797(01)00162-4

Tsutsumi R, Leo MA, Kim C, Tsutsumi M, Lasker J, Lowe N, Lieber CS. Interaction of ethanol with enflurane metabolism and toxicity: role of P450IIE1. Alcohol Clin Exp Res. 1990; 14: 174-179. https://doi.org/10.1111/j.1530-0277.1990.tb00466.x

Yanagimoto T, Itoh S, Muller-Enoch D, Kamataki T. Mouse liver cytochrome P-450 (P-450IIIAM1): its cDNA cloning and inducibility by dexamethasone. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression. 1992; 1130: 329-332. https://doi.org/10.1016/0167-4781(92)90447-8

Wlcek K, Svoboda M, Sellner F, Krupitza G, Jaeger W, Thalhammer T. Altered expression of organic anion transporter polypeptide (OATP) genes in human breast carcinoma. Cancer Biol Ther 2008; 7: 1450-1455. https://doi.org/10.4161/cbt.7.9.6282

Albekairi TH, Vaidya B, Patel R, Nozohouri S, Villalba H, Zhang Y, Lee YS, Al-Ahmad A, Abbruscato TJ. Brain delivery of a potent opioid receptor agonist, biphalin during ischemic stroke: role of organic anion transporting polypeptide (OATP). Pharmaceutics 2019; 11: 467. https://doi.org/10.3390/pharmaceutics11090467

Champe PC, Harvey RA, Ferrier DR. Biochemistry. Lippincott Williams & Wilkins 2005.

Downloads

Published

2024-01-19

Issue

Section

Articles