Antagonistic Atrial Natriuretic Peptide with the Renin-Angiotensin-Aldosterone System and Effects on Systemic Blood Pressure Regulation
DOI:
https://doi.org/10.12970/2308-8044.2022.10.02Keywords:
Atrial natriuretic peptide, Heart failure, Angiotensin-so-language-suppressing enzyme inhibitors, Angiotensin II, Angiotensin antagonistAbstract
The atrial natriuretic peptide (ANP) presents, from the point of view of systemic blood pressure regulation, a relevant antagonistic association when compared to the renin-angiotensin-aldosterone system (RAAS). Through a careful review, the aim of the study was to evidence the process and the link between systems and hormones, from prohormone secretion, conversion, interaction with receptors, ANP action, correlating its antagonistic effects to RAAS, and the association between the mechanisms of action and SBP. The method adopted was a systematic review through electronic scientific articles in the database of the Virtual Health Library, PubMed and Cochrane. The process of searching and selecting the articles followed the rule of systematic review – PRISMA. The study demonstrates that the effects of ANP release due to cardiac atrial expansion are effectively counterregulators to the effects of RAAS malfunction, acting in a way to preserve the back, cardiac and vascular issues from blood pressure control. This mechanism acts via hydroelectrolytic regulation, especially through processes of resorption and excretion of sodium and water by the removal tubules, where the RAAS acts to increase blood volume and ANP acting to potentiate diuretic mechanisms. It is concluded that the degrading effects of the malfunction of RAAS, to some extent, be counter-regulated by the effects of ANP release, acting in the control of systemic blood pressure, alone or concomitantly with pharmacological treatment.
References
Bold AJ, Borenstein HB, Veress AT, Sonnenberg H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 1981; 28: 89-94. https://doi.org/10.1016/0024-3205(81)90370-2
Hall JE, Guyton AC. Textbook of medical physiology. 13th ed. Rio de Janeiro: Elsevier, 2017.
Pereira NL, Tosakulwong N, Scott CG, et al. Circulating atrial natriuretic peptide genetic association study identifies a novel gene cluster associated with stroke in whites. Circ Cardiovasc Genet 2015; 8: 141-9. https://doi.org/10.1161/CIRCGENETICS.114.000624
Rubattu S, Forte M, Marchitti S, Volpe M. Molecular implications of natriuretic peptides in the protection from hypertension and target organ damage development. Int J Mol Sci 2019; 20(4): 798. https://doi.org/10.3390/ijms20040798
Volpe M, Carnovali M, Mastromarino V. The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin Sci (Lond) 2016; 130(2): 57-77. https://doi.org/10.1042/CS20150469
Cannone V, Cabassi A, Volpi R, Burnett JC, Jr. Atrial natriuretic peptide: a molecular target of novel therapeutic approaches to cardio-metabolic disease. Int J Mol Sci 2019; 20(13): 3265. https://doi.org/10.3390/ijms20133265
Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 2015; 349: g7647. https://doi.org/10.1136/bmj.g7647
Dahlöf B. Left ventricular hypertrophy and angiotensin II antagonists. Am J Hypertens 2001; 14(2): 174-182. https://doi.org/10.1016/S0895-7061(00)01257-7
Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM. Classical renin-angiotensin system in kidney physiology. Compr Physiol 2014; 4(3): 1201-1228. https://doi.org/10.1002/cphy.c130040
Funder JW. Aldosterone and mineralocorticoid receptors-physiology and pathophysiology. Int J Mol Sci 2017; 18(5): 1032. https://doi.org/10.3390/ijms18051032
Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev 2006; 86(3): 747-803. https://doi.org/10.1152/physrev.00036.2005
Dudoignon E, Dépret F, Legrand M. Is the renin-angiotensin-aldosterone system good for the kidney in acute settings? Nephron 2019; 143(3): 179-183. https://doi.org/10.1159/000499940
Young DB, Smith MJ Jr, Jackson TE, Scott RE. Multiplicative interaction between angiotensin II and K concentration in stimulation of aldosterone. Am J Physiol 1984; 247(3 Pt 1): E328-E335. https://doi.org/10.1152/ajpendo.1984.247.3.E328
Byrd JB, Turcu AF, Auchus RJ. Primary aldosteronism: practical approach to diagnosis and management. Circulation 2018; 138(8): 823-835. https://doi.org/10.1161/CIRCULATIONAHA.118.033597
Dzau VJ, Colucci WS, Hollenberg NK, Williams GH. Relation of the renin-angiotensin-aldosterone system to clinical state in congestive heart failure. Circulation 1981; 63(3): 645-51. https://doi.org/10.1161/01.CIR.63.3.645
Sullivan RD, Mehta RM, Tripathi R, Reed GL, Gladysheva IP. Renin activity in heart failure with reduced systolic function-new insights. Int J Mol Sci 2019; 28; 20(13): 3182. https://doi.org/10.3390/ijms20133182
Bekheirnia MR, Schrier RW. Pathophysiology of water and sodium retention: edematous states with normal kidney function. Curr Opin Pharmacol 2006; 6(2): 202-207. https://doi.org/10.1016/j.coph.2005.09.008
Hartupee J, Mann DL. Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol 2017; 14: 30-38. https://doi.org/10.1038/nrcardio.2016.163
McCarthy CG, Wenceslau CF, Goulopoulou S, et al. Circulating mitochondrial DNA and Toll-like receptor 9 are associated with vascular dysfunction in spontaneously hypertensive rats. Cardiovasc Res 2015; 107: 119-130. https://doi.org/10.1093/cvr/cvv137
Muñoz-Durango N, Fuentes CA, Castillo AE, et al. Role of the renin-angiotensin-aldosterone system beyond blood pressure regulation: molecular and cellular mechanisms involved in end-organ damage during arterial hypertension. Int J Mol Sci 2016; 17(7): 797. https://doi.org/10.3390/ijms17070797
Junqueira LC, Carneiro J. Cellular and molecular biology. 9th ed. Rio de Janeiro: Guanabara Koogan, 2018.
Cagnoni F, Njwe CA, Zaninelli A, et al. Blocking the RAAS at different levels: an update on the use of the direct renin inhibitors alone and in combination. Vasc Health Risk Manag 2010; 6: 549-559. https://doi.org/10.2147/VHRM.S11816
Marte F, Sankar P, Cassagnol M. Captopril. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022.
Urata H, Nishimura H, Ganten D. Chymase-dependent angiotensin II forming systems in humans. Am J Hypertens 1996; 9(3): 277-284. https://doi.org/10.1016/0895-7061(95)00349-5
Ferrario CM, Mullick AE. Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease. Pharmacol Res 2017; 125(PtA): 57-71. https://doi.org/10.1016/j.phrs.2017.05.020
Sun W, Zhang H, Guo J, et al. Comparison of the efficacy and safety of different ace inhibitors in patients with chronic heart failure: a prisma-compliant network meta-analysis. Medicine 2016; 95(6): e2554. https://doi.org/10.1097/MD.0000000000002554
Wong PC. Timmermans PBMWM. Nonpeptide angiotensin II receptor antagonists: insurmountable angiotensin II antago- nism of EXP3892 is reversed by the surmountable antagonist DuP 753. J Pharmacol Exp Ther 1991; 258: 49-57.
Csajka C, Buclin T, Brunner HR, Biollaz J. Pharmacokinetic-pharmacodynamic profile of angiotensin II receptor antagonists. Clin Pharmacokinet 1997; 32: 1-29. https://doi.org/10.2165/00003088-199732010-00001
Oparil S, Williams D, Chrysant SG, Marbury TC, Neutel J. Comparative efficacy of olmesartan, losartan, valsartan, and irbesartan in the control of essential hypertension. J Clin Hypertens 2001; 3(5): 283-318. https://doi.org/10.1111/j.1524-6175.2001.01136.x
Wright JM, Musini VM, Gill R. First-line drugs for hypertension. Cochrane Database Syst Rev 2018; 4(4): CD001841. https://doi.org/10.1002/14651858.CD001841.pub3
Burnett H, Earley A, Voors AA, et al. Thirty years of evidence on the efficacy of drug treatments for chronic heart failure with reduced ejection fraction. A network meta-analysis. Circ Heart Fail 2017; 10: pii:e003529. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003529
Straus MH, Hall AS. Angiotensin receptor blockers do not reduce risk of myocardial infarction, cardiovascular death, or total mortal- ity: further evidence for the ARB-MI paradox. Circulation 2017; 135(22): 2088-2090. https://doi.org/10.1161/CIRCULATIONAHA.117.026112
Chobanian AV. Angiotensin inhibition. N Engl J Med 1974; 291(16): 844-845. https://doi.org/10.1056/NEJM197410172911611
Rincon-Choles H. ACE inhibitor and ARB therapy: practical recommendations. Cleve Clin J Med 2019; 86(9): 608-611. https://doi.org/10.3949/ccjm.86a.19016
Saglimbene V, Palmer SC, Ruospo M, et al; Long-term impact of RAS inhibition on cardiorenal outcomes (LIRICO) investigators. the long-term impact of renin-angiotensin system (RAS) inhibition on cardiorenal outcomes (LIRICO): a randomized, controlled trial. J Am Soc Nephrol 2018; 29(12): 2890-2899. https://doi.org/10.1681/ASN.2018040443
Pemberton CJ, Siriwardena M, Kleffmann T, et al. First identification of circulating prepro-A-type natriuretic peptide (preproANP) signal peptide fragments in humans: initial assessment as cardiovascular biomarkers. Clin Chem 2012; 58(4): 757-767. https://doi.org/10.1373/clinchem.2011.176990
Dong N, Fang C, Jiang Y, et al. Corin mutation R539C from hypertensive patients impairs zymogen activation and generates an inactive alternative ectodomain fragment. J Biol Chem 2013; 288(11): 7867-7874. https://doi.org/10.1074/jbc.M112.411512
Sosa RE, Volpe M, Marion DN, et al. Relationship between renal hemodynamic and natriuretic effects of atrial natriuretic factor. Am J Physiol 1986; 250(3 Pt 2): F520-4. https://doi.org/10.1152/ajprenal.1986.250.3.F520
Sezai A, Shiono M, Orime Y, et al. Low-dose continuous infusion of human atrial natriuretic peptide during and after cardiac surgery. Ann Thorac Surg 2000; 69(3): 732-738. https://doi.org/10.1016/S0003-4975(99)01305-3
Moriyama T, Hagihara S, Shiramomo T, Nagaoka M, Iwakawa S, Kanmura Y. The protective effect of human atrial natriuretic peptide on renal damage during cardiac surgery. J Anesth 2017; 31(2): 163-169. https://doi.org/10.1007/s00540-016-2284-0
Franco F, Dubois SK, Peshock RM, Shohet RV. Magnetic resonance imaging accurately estimates LV mass in a transgenic mouse model of cardiac hypertrophy. Am J Physiol 1998; 274(2): H679-83. https://doi.org/10.1152/ajpheart.1998.274.2.H679
Kishimoto I, Rossi K, Garbers DL. A genetic model provides evidence that the receptor for atrial natriuretic peptide (gu-anylyl cyclase-A) inhibits cardiac ventricular myocyte hyper-trophy. Proc Natl Acad Sci U S A 2001; 98(5): 2703-2706. https://doi.org/10.1073/pnas.051625598
Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 2006; 27: 47-72. https://doi.org/10.1210/er.2005-0014
Carvajal JA, Germain AM, Huidobro-Toro JP, Weiner CP. Molecular mechanism of cGMP-mediated smooth muscle relaxation. J Cell Physiol 2000; 184(3): 409-420. https://doi.org/10.1002/1097-4652(200009)184:3<409::AID-JCP16>3.0.CO;2-K
Nakagawa Y, Nishikimi T, Kuwahara K. Atrial and brain natriuretic peptides: hormones secreted from the heart. Peptides 2019; 111: 18-25. https://doi.org/10.1016/j.peptides.2018.05.012
Cappellin E, De Palo EF, Gatti R, Soldà G, Woloszczuk W, Spinella P. Effect of prolonged physical exercise on urinary proANP1-30 and proANP31-67. Clin Chem Lab Med 2004; 42(9): 1058-1062. https://doi.org/10.1515/CCLM.2004.212
Larsen AI, Hall C, Aukrust P, Aarsland T, Faris P, Dickstein K. Prognostic usefulness of an increase of N-terminal proatrial natriuretic peptide during exercise in patients with chronic heart failure. Am J Cardiol 2003; 92: 91-94. https://doi.org/10.1016/S0002-9149(03)00478-8
Durand F, Mucci P, Hayot M, Couret I, Bonnardet A, Préfaut Ch. Attenuated ANF response to exercise in athletes with exercise-induced hypoxemia. Int J Sports Med 2004; 25(4): 252-256. https://doi.org/10.1055/s-2004-819934
McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 2014; 371(11): 993-1004. https://doi.org/10.1056/NEJMoa1409077
Velazquez EJ, Morrow DA, DeVore AD, et al. Angiotensin-neprilysin inhibition in acute decompensated heart failure. N Engl J Med 2019; 380(6): 539-548. https://doi.org/10.1056/NEJMoa1812851
Gu J, Noe A, Chandra P, et al. Pharmacokinetics and pharmacodynamics of LCZ696, a novel dual-acting angiotensin receptor-neprilysin inhibitor (ARNi). J Clin Pharmacol 2010; 50(4): 401-414. https://doi.org/10.1177/0091270009343932