Use of Cat-Anionic Vesicles as Molecular Vectors for Gene Transfer into Target Cells

Authors

  • Camillo La Mesa Dept. of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, I-00185, Rome, Italy
  • Francesca Papacci Dept. of Biology and Biotechnologies, Sapienza University of Rome, P.le Aldo Moro 5, I-00185, Rome, Italy
  • Carlotta Pucci Dept. of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, I-00185, Rome, Italy
  • Gianfranco Risuleo Dept. of Biology and Biotechnologies, Sapienza University of Rome, P.le Aldo Moro 5, I-00185, Rome, Italy
  • Franco Tardani Dept. of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, I-00185, Rome, Italy

DOI:

https://doi.org/10.12970/2308-8044.2014.02.02.4

Keywords:

 Ionic surfactants, Ionic Lipids, Cat-Anionic mixtures, Vesicles, Lipo-plexes, Physico-chemical properties, Cytotoxicity, Transfection technologies, Bio-medical applications.

Abstract

We report on the possibilities to use cat-anionic vesicles as active vectors for transfection technologies. Cat-anionic aggregates are non-stoichiometric mixtures made of oppositely charged surfactants, or lipids. Depending on the relative amounts of two such components, bi- or multi-layered vesicles may be formed. The former ones adsorb bio-polymers on their outer surface, but bi-layers may also contain large amounts of lipophilic species in their interior. The transfection fate depends on the vesicle ability and efficiency in adsorption, which leads, eventually, to fusion with cell membranes. The intra-membrane uptake mechanisms differ significantly, and depend on whether the outer, inner, or bi-layer distribution of the species is considered. The first possibility involves a direct exchange of (supra) molecular entities between fluid surfaces in contact; the second and third, conversely, imply membrane fusion and subsequent transport of material within the cell matrix. A realistic combination of the above possibilities can be envisaged, and would ensure a long term action of the transferred (transfected) formulations. Examples taken from recent literature suggest that a realistic possibility is offered to high-yield molecular penetration: this becomes useful in gene transfer and molecular transfection technologies. Some technological aspects inherent to the above formulations are briefly outlined. The overall effect of penetration across the cell membrane of exogenous material in terms of biocompatibility is quite a formidable task to face with and shall be described in detail. 

References

Jacoby E, Mozzarelli A. Chemogenomic strategies to expand the bioactive chemical space. Curr Medicinal Chem 2009; 16: 4374-81. http://dx.doi.org/10.2174/092986709789712862

Raza A, Ericson ME, Nugent JS, Dreis CD, Vince RJ. A Bio-Mimetic Approach to DNA Photoprotection. Investigative Dermatol 2014; 134: 559-62. http://dx.doi.org/10.1038/jid.2013.344

Scholz S, Griffiths CA, Dimov SS, Brousseau EB, Lalev G, Petkov P. New process chains for replicating micro and nano structured surfaces with bio-mimetic applications. Ann Techn Conf Soc Plastics Engineers 2009; 67: 3021-7.

Dominguez de Maria P, Shanmuganathan S. Umpolung catalysis in benzoin-type and Stetter-type reactions. From enzymatic performances to bio-mimetic organocatalytic concepts. Curr Org Chem 2011; 15: 2083-97. http://dx.doi.org/10.2174/138527211796150679

Yuan X, Wu J, Liu Y, et al. A self-repair mode for capillary reinforced polymer composite. Key Engineer Mater 2014; 575-576: 147-50. http://dx.doi.org/10.4028/www.scientific.net/KEM.575-576.147

Cirillo V, Guarino V, Alvarez-Perez MA, Marrese M, Ambrosio L. Optimization of fully aligned bioactive electrospun fibers for "in vitro" nerve guidance. J Mater Sci Mater Med 2014; 25: 2323-32. http://dx.doi.org/10.1007/s10856-014-5214-4

Hildebrand GE, Harnisch S. Advanced drug delivery systems for biopharmaceuticals. Mod Biopharmacol 2005; 4: 1361-91.

Rudiuk S, Franceschi MS, Chouini-Lalanne N, Perez E, Rico-Lattes I. DNA photo-oxidative damage hazard in transfection complexes. Photochem Photobiol 2011; 87: 103-8. http://dx.doi.org/10.1111/j.1751-1097.2010.00831.x

Soussan E, Cassel S, Blanzat M, Rico Lattes I. Drug delivery by soft matter: matrix and vesicular carriers. Angew Chem Intern Ed 2009; 48: 274-88. http://dx.doi.org/10.1002/anie.200802453

Jokela P, Jönsson, B, Khan A. Phase equilibria of catanionic surfactant-water systems. J Phys Chem 1987; 91: 3291-8. http://dx.doi.org/10.1021/j100296a037

Marques EF, Brito RO, Silva SG, et al. Spontaneous vesicle formation in catanionic mixtures of amino acid-based surfactants: Chain length symmetry effects. Langmuir 2008; 24: 11009-17. http://dx.doi.org/10.1021/la801518h

Bonincontro A, Spigone E, RuizPeña M, Letizia C, La Mesa CJ. Lysozyme binding onto cat-anionic vesicles. J Colloid Interface Sci 2006; 304: 342-7. http://dx.doi.org/10.1016/j.jcis.2006.09.046

Sciscione F, Pucci C, La Mesa C. Binding of a Protein or a Small Polyelectrolyte onto Synthetic Vesicles. Langmuir 2014; 30: 2810-9. http://dx.doi.org/10.1021/la500199w

Pucci C, Scipioni A, La Mesa C. Albumin binding onto synthetic vesicles. Soft Matter 2012; 8: 9669-75. http://dx.doi.org/10.1039/c2sm26260f

Aiello C, Andreozzi P, La Mesa C, Risuleo G. Biological activity of SDS-CTAB catanionic vesicles in cultured cells and assessment of their cytotoxicityending in apoptosis. Colloids Surf B Biointerf 2010; 78: 149-54. http://dx.doi.org/10.1016/j.colsurfb.2010.02.013

Muzzalupo R, Tavano L, La Mesa C. Alkyl glucopyranoside-based niosomes containing methotrexate for pharmaceutical applications: Evaluation of physico-chemical and biological properties. Intern J Pharmaceutics 2013; 458: 224-9. http://dx.doi.org/10.1016/j.ijpharm.2013.09.011

Mukerjee P, Mysels KJ. Critical Micelle Concentration of Aqueous Surfactant Systems. Natl. Bur. Std. Series, NSRDS - NBS 36, Washington, D.C. 1971.

Israelachvili J N, Mitchell DJ, Ninham BW J Chem Soc Faraday Trans 2 1976; 72: 1525-68.

Marques EF, Regev O, Khan A, Lindman B. Vesicle formation and general phase behavior in the catanionic mixture SDS-DDAB-water. The cationic-rich side. J Phys Chem B 1999; 103: 8353-63. http://dx.doi.org/10.1021/jp990852p

Khan A, Marques EF. Synergism and polymorphism in mixed surfactant systems. Curr Opin Colloid Interface Sci 2000; 4: 402-10. http://dx.doi.org/10.1016/S1359-0294(00)00017-0

Tondre C, Caillet C. Properties of the amphiphilic films in mixed cationic/anionic vesicles: a comprehensive view from a literature analysis. Adv Colloid Interface Sci 2001; 93: 115-34. http://dx.doi.org/10.1016/S0001-8686(00)00081-6

Marques EF. Size and stability of catanionic vesicles: Effects of formation path, sonication, and aging. Langmuir 2000; 16: 4798-807. http://dx.doi.org/10.1021/la9908135

Moroi Y. Micelles. Theoretical and Applied Aspects. Plenum Press New York 1992; Chapt. X: 183-9. http://dx.doi.org/10.1007/978-1-4899-0700-4_10

Safran SA, Pincus P, Andelman D. Theory of spontaneous vesicle formation in surfactant mixtures. Science 1990; 248: 354-6. http://dx.doi.org/10.1126/science.248.4953.354

Safran SA, Pincus P, Andelman D, MacKintosh FC. Stability and phase behavior of mixed surfactant vesicles. Phys Rev A Atom Mol Opt Phys 1991; 43: 1071-8. http://dx.doi.org/10.1103/PhysRevA.43.1071

Andreozzi P, Funari SF, La Mesa C, Mariani P, Ortore MG, Sinibaldi R, Spinozzi FJ. Multi- to Unilamellar transitions in Catanionic Vesicles. J Phys Chem B 2010; 114: 8056-60. http://dx.doi.org/10.1021/jp100437v

Valstar A, Brown W, Almgren M. The Lysozyme-Sodium Dodecylsulfate System Studied by Dynamic and Static Light Scattering. Langmuir 1999; 15: 2366-74. http://dx.doi.org/10.1021/la981234n

Valstar A, Vasilescu M, Vigoroux C, STilbs P, Almgren M. Heat-Set Bovine Serum Albumin-Sodium Dodecylsulfate Gels Studied by Fluorescence Probe Methods, NMR and Light Scattering. Langmuir 2001; 17: 3208-15. http://dx.doi.org/10.1021/la0016221

Letizia C, Andreozzi P, Scipioni A, La Mesa C, Bonincontro A, Spigone E J. Protein Binding onto Surfactant-Based Synthetic Vesicles. Phys Chem B 2007; 111: 898-908. http://dx.doi.org/10.1021/jp0646067

Bonincontro A, La Mesa C, Proietti C, Risuleo G. A Biophysical Investigation on the Binding and Controlled DNA Release in a Cetyltrimethyl ammonium Bromide-Sodium Octylsulfate Cat-Anionic Vesicle System. Biomacromolecules 2007; 8: 1824-9. http://dx.doi.org/10.1021/bm0612079

Tavano L, Aiello R, Ioele G, Picci N, Muzzalupo R. Niosomes from glucuronic acid-based surfactant as new carriers for cancer therapy: Preparation, characterization and biological properties. Colloids Surf B 2014; 118: 7-13. http://dx.doi.org/10.1016/j.colsurfb.2014.03.016

Tavano L, Pinazo A, Abo-Riya M, et al. Cationic vesicles based on biocompatible diacyl glycerol-arginine surfactants: Physicochemical properties, antimicrobial activity, encapsulation efficiency and drug release. Colloids Surf B 2014; 120:160-7. http://dx.doi.org/10.1016/j.colsurfb.2014.04.009

Garnacho C, Albelda SM, Muzykantov VR, Muro S. Differential intra-endothelial delivery of polymer nanocarriers targeted to distinct PECAM-1 epitopes. J Controlled Rel 2008; 130: 226-33. http://dx.doi.org/10.1016/j.jconrel.2008.06.007

Pucci C, Tardani F, La Mesa C. Formation and properties of gels based on lipo-plexes. J Phys Chem B 2014; 118: 6107-16. http://dx.doi.org/10.1021/jp5023086

Chatelier RC, Minton AP. Adsorption of globular proteins on locally planar surfaces: models for the effect of excluded surface area and aggregation of adsorbed protein on adsorption equilibria. Biophys J 1996; 71: 2367-74. http://dx.doi.org/10.1016/S0006-3495(96)79430-4

Feng X, Leduc M, Pelton R. Polyelectrolyte complex characterization with isothermal titration calorimetry and colloid titration. Colloids Surf. A 2008; 317: 535-42. http://dx.doi.org/10.1016/j.colsurfa.2007.11.053

Adamson AW. Physical Chemistry of Surfaces. 5th ed. New York: Wiley 1990; Chapter V, pp 218-226.

Hunter RJ. Foundations of Colloid Science; Clarendon Press: Oxford, 1995; Vol. II, Chapter XIII, pp 807-808.

Bonincontro A, Falivene M, La Mesa C, Risuleo G, RuizPeña M. Dynamics of DNA adsorption on and release from SDS- DDAB catanionic vesicles: A multitechnique study. Langmuir 2008; 24: 1973-8. http://dx.doi.org/10.1021/la701730h

Pucci C, Barbetta A, Sciscione F, Tardani F, La Mesa C. Ion Distribution around Synthetic Vesicles of the Cat-Anionic Type. J Phys Chem B 2014; 118: 557-66. http://dx.doi.org/10.1021/jp4110745

Barchini R, Pottel R. Counterion contribution to the dielectric spectrum of aqueous solutions of ionic surfactant micelles. J Phys Chem 1994; 98: 7899-905. http://dx.doi.org/10.1021/j100083a025

Shilov VN, Dukhin SS. Theory of the low-frequency dispersion of permittivity of suspensions of spherical colloidal particles caused by polarization of the double layer. Kolloid Z 1970; 32: 293-300.

Grosse C. Generalization of a Classic Thin Double Layer Polarization Theory of Colloidal Suspensions to Electrolyte Solutions with Different Ion Valences. J Phys Chem B 2009; 113: 8911-24. http://dx.doi.org/10.1021/jp8112057

Grosse C. Generalization of a Classic Theory of the Low Frequency Dielectric Dispersion of Colloidal Suspensions to Electrolyte Solutions with Different Ion Valences. J Phys Chem B 2009; 113: 11201-15. http://dx.doi.org/10.1021/jp904742v

Grosse C. Extension of a Classic Theory of the Low Frequency Dielectric Dispersion of Colloidal Suspensions to the High Frequency Domain. J Phys Chem B 2010; 114: 12520-7. http://dx.doi.org/10.1021/jp106336g

Kwon GS. Kataoka K. Block copolymer micelles as long-circulating drug vehicles. Adv Drug Delivery Rev 1995; 16: 295-309. http://dx.doi.org/10.1016/0169-409X(95)00031-2

Kocer A. Functional liposomal membranes for triggered release. Methods Mol Biol 2010; 605(Liposomes, Vol. 1): 243-55.

Kuo BJH, Jan MS, Chang CH, Chiu HW, Li CT. Cytotoxicity characterization of catanionic vesicles in RAW 264.7 murine macrophage-like cells. Colloids Surf B 2005; 41: 189-96. http://dx.doi.org/10.1016/j.colsurfb.2004.12.008

Cheng LC, Jiang X, Wang J, Chen C, Liu RS. Nano-bio effects: interaction of nanomaterials with cells. Nanoscale 2013; 5: 3547-69. http://dx.doi.org/10.1039/c3nr34276j

Colomer A, Pinazo A, Garcia MT, et al. pH-sensitive surfactants from lysine: assessment of Their Cytotoxicity and Environmental Behavior. Langmuir 2012; 28: 5900-12. http://dx.doi.org/10.1021/la203974f

Nogueira DR, Mitjans M, Infante MR, Vinardell MP. Comparative sensitivity of tumor and non-tumor cell lines as a reliable approach for in vitro cytotoxicity screening of lysine-based surfactants with potential pharmaceutical applications. Intern J Pharm 2011; 420: 51-8. http://dx.doi.org/10.1016/j.ijpharm.2011.08.020

Kriegel C, Attarwala H, Amiji M. Multi-compartmental oral delivery systems for nucleic acid therapy in the gastrointestinal tract. Adv Drug Deliv Rev 2013; 65: 891-901. http://dx.doi.org/10.1016/j.addr.2012.11.003

Guo P, Haque F, Hallahan B, Reif R, Li H. Uniqueness, advantages, challenges, solutions, and perspectives in therapeutics applying RNA nanotechnology. Nucleic Acid Ther 2012; 22: 226-45.

Cosimati R, Milardi GL, Bombelli C, Bonincontro A, Bordi F, Mancini G, Risuleo G. Interactions of DMPC and DMPC/gemini liposomes with the cell membrane investigated by electrorotation. Biochim Biophys Acta 2013; 1828: 352-6. http://dx.doi.org/10.1016/j.bbamem.2012.10.021

Stefanutti E, Papacci F, Sennato S, et al. Cationic liposomes formulated with DMPC and a gemini surfactant traverse the cell membrane without causing a significant bio-damage. Biochim Biophys Acta 2014; 2736: 00198-9.

Stevens JB, Abdallah BY, Liu G, et al Heterogeneity of celldeath. Cytogenet Genome Res 2013; 139: 164-73. http://dx.doi.org/10.1159/000348679

McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease.Cold Spring Harb Perspect Biol 2013 5, a008656. http://dx.doi.org/10.1101/cshperspect.a008656

Kaczmarek A, Vandenabeele P, Krysko DV. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 2013; 38: 209-23. http://dx.doi.org/10.1016/j.immuni.2013.02.003

Tekpli X, Holme JA, Sergent O, Lagadic-Gossmann D. Role for membrane remodeling in cell death: implication for health and disease. Toxicology 2013; 304:141-57. http://dx.doi.org/10.1016/j.tox.2012.12.014

Chaabane W, User SD, El-Gazzah M, Jaksik R, Sajjadi E, Rzeszowska-Wolny J, Los MJ. Autophagy, apoptosis, mitoptosis and necrosis: interdependence between those pathways and effects on cancer. Arch Immunol Ther Exp (Warsz) 2013; 61: 43-58. http://dx.doi.org/10.1007/s00005-012-0205-y

Mattetti A, Risuleo G. Apoptosis: a mode of cell death. Biochem Mol Biol. In press.

Van Blitterswijk WJ, Van Hoeven RP, Van Der Meer BW. Lipid structural order parameters (reciprocal of fluidity) in biomembranes derived from steady-state fluorescence polarization measurements. Biochim Biophys Acta 1981; 644: 323-32. http://dx.doi.org/10.1016/0005-2736(81)90390-4

Van Blitterswijk W. J., in: Physiology of membrane fluidity, CRC Press, Taylor & Francis Group, London UK. Vol. II, 1984.

Shinitzki M., in: Physiology of membrane fluidity, CRC Press, Taylor & Francis Group, London UK. Vol. I, 1984.

Bonincontro A, Di Ilio V, Pedata O, Risuleo GJ. Dielectric properties of the plasma membrane of cultured murine fibroblasts treated with a non-terpenoid extract of Azadirachtaindica seeds. Membr Biol 2007; 215: 75-9. http://dx.doi.org/10.1007/s00232-007-9007-2

Russo L, Berardi V, Tardani F, La Mesa C, Risuleo G. Delivery of RNA and its intracellular translation into protein mediated by SDS-CTAB vesicles: potential use in nanobiotechnology. Biomed Res Int 2013; 2013: 734596. http://dx.doi.org/10.1155/2013/734596

Tonini GP. Molecular mechanisms involved in DNA repair, in gene rearrangement and in gene amplification may be considered as an integrated system in maintaining cellular homeostasis and cell survival. Anticancer Res 1988; 8: 881-4.

Le RhunY, Kirkland JB, Shah GM. Cellular responses to DNA damage in the absence of Poly(ADP-ribose) polymerase. Biochem Biophys Res Commun 1998; 245: 1-10. http://dx.doi.org/10.1006/bbrc.1998.8257

Mosmann TJ. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Immunol Meth 1983; 65: 55-63. http://dx.doi.org/10.1016/0022-1759(83)90303-4

Boland MP. DNA damage signalling and NF-kappaB: implications for survival and death in mammalian cells. Biochem Soc Trans 2001; 29: 674-8. http://dx.doi.org/10.1042/BST0290674

Friedberg EC, Wagner R, Radman M. Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science 2002; 296: 1627-30. http://dx.doi.org/10.1126/science.1070236

Cory S, Huang DC, Adams JM. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 2003; 22: 8590-607. http://dx.doi.org/10.1038/sj.onc.1207102

Norbury CJ, Zhivotovsky B. DNA damage-induced apoptosis. Oncogene 2004; 23: 2797-808. http://dx.doi.org/10.1038/sj.onc.1207532

Malanga M, Althaus FR. The role of poly(ADP-ribose) in the DNA damage signaling network. Biochem Cell Biol 2005; 83: 354-64. http://dx.doi.org/10.1139/o05-038

Gavrieli Y, Sherman Y, Ben-Sasson SAJ. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. Cell Biol 1992; 119: 493–501. http://dx.doi.org/10.1083/jcb.119.3.493

Draper HH, Hadley M. A review of recent studies on the metabolism of exogenous and endogenous malondialdehyde. Xenobiotica 1990; 20: 901-10. http://dx.doi.org/10.3109/00498259009046905

Chancerelle Y, Kergonou JF. Immunologic relevance of malonicdialdehyde. Ann Pharm 1995; 53241-50.

Cazzola R, Russo-Volpe S, Cervato G, Cestaro B. Biochemical assessments of oxidative stress, erythrocyte membrane fluidity and antioxidant status in professional soccer players and sedentary controls. Eur J Clin Invest 2003; 33: 924-30. http://dx.doi.org/10.1046/j.1365-2362.2003.01227.x

Milardi GL, Stringaro A, Colone M, Bonincontro A, Risuleo G. The Cell Membrane is the Main Target of Resveratrol as Shown by Interdisciplinary Biomolecular/Cellular and Biophysical Approaches. J Membr Biol 2014; 247: 1-8. http://dx.doi.org/10.1007/s00232-013-9604-1

Berardi V, Aiello C, Bonincontro A, Risuleo GJ. Alterations of the plasma membrane caused by murine polyomavirus proliferation: an electrorotation study. Membr Biol 2009; 229: 19-25. http://dx.doi.org/10.1007/s00232-009-9172-6

Andrabi SA, Dawson TM, Dawson VL. Ann N. Y. Mitochondrial and nuclear cross talk in cell death: parthanatos. Acad Sci 2008; 1147: 233-41. http://dx.doi.org/10.1196/annals.1427.014

Li J, Yuan J. Caspases in apoptosis and beyond. Oncogene 2008; 27: 6194–6206. http://dx.doi.org/10.1038/onc.2008.297

Arnold WM, Zimmermann U Z. Rotating-field induced rotation and measurement of the membrane capacitance of single mesophill cells of Avena sativa. Z Naturforschung C 1982; 37: 908-15.

Asami K, Takahashi Y, Takashima S. Dielectric properties of mouse lympphcytes and erythrocytes. Biochim Biophys Acta 1989; 1010: 49-55. http://dx.doi.org/10.1016/0167-4889(89)90183-3

Xu X, Arnold WM, Zimmerman U. Alteration in the dielectric properties of T and B lymphocyte membranes induced by mitogenic stimulation. Activation monitored by electro-rotation of single cells. Biochim Biophys Acta 1990; 1021: 191-200. http://dx.doi.org/10.1016/0005-2736(90)90033-K

Gimsa J, Marszalek P, Loewe U, Tsong TY. Dielectrophoresis and electrorotation of neurospora slime and murine myeloma cells. Biophys J 1991; 60: 749-60. http://dx.doi.org/10.1016/S0006-3495(91)82109-9

Wang X, Huang Y, Gascoyne F, Becker R, Holzel R Pethig. Changes in Friend’s murine erythroleukemia cell membranes during induced differentiation determine by electrorotation. Biochim Biophys Acta 1994; 1193:191-200.

Gimsa J. A comprehensive approach to electro-orientation, electrodeformation, dielectrophoresis, and electrorotation of ellipsoidal particles and biological cells. Bioelectrochemistry 2001; 54: 23-31. http://dx.doi.org/10.1016/S0302-4598(01)00106-4

Asami K. Dielectric properties of microvillous cells simulated by three-dimensional finite-element method. Biochemistry 2011; 81: 29-33.

Markx GH, Davey CL. The dielectric properties of biological cells at radiofrequencies: applications in biotechnology. Enzyme Microbial Technol 1999; 25: 161-71. http://dx.doi.org/10.1016/S0141-0229(99)00008-3

Morgan H, Sun T, Holmes D, Gawad S, Green NG. Single cell dielectric spectroscopy. J Phys D AppL Phys 2007; 40: 61-70. http://dx.doi.org/10.1088/0022-3727/40/1/S10

Bordi F, Cametti C, Rosi A, Calcabrini A. Frequency domain electrical conductivity measurements of the passive electrical properties of human lymphocytes. Biochim Biophys Acta 1993; 1153: 77-88. http://dx.doi.org/10.1016/0005-2736(93)90278-8

Israelachvili JN. Intermolecular and surface forces. Academic Press - Elsevier, Oxford, UK, 3rd edition, 2011.

Engvall G, Perlman P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin.Immunochem 1971; 8: 871-4. http://dx.doi.org/10.1016/0019-2791(71)90454-X

Barbetta A, La Mesa C, Muzi L, Pucci C, Risuleo G, Tardani F. Cat-anionic vesicle-based systems as potential carriers in nanotechnologies. In Nabiotechnology (Waqar Ahmed Ed.) One Central Press, Manchester UK. 2014 Chapt. 44. ISBN 978-1-910086-02-5 Hardback; 978 1-910086-03-2. In press.

Lee J, Guarino V, Gloria A, et al. Regeneration of Achilles’ Tendon: the Role of Dynamic Stimulation for Enhanced Cell Proliferation and Mechanical Properties. J Biomaterials Sci 2010; 21:1173-90. http://dx.doi.org/10.1163/092050609X12471222313524

Reitmaier S, Wolfram U, Ignatius A, et al. Hydrogels for nucleus replacement-facing the biomechanical challenge. J Mechanical Behavior Biomed Mater 2012; 14: 67-77. http://dx.doi.org/10.1016/j.jmbbm.2012.05.010

Puppi D, Mota C, Gazzarri M, et al. Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering. Biomed Microdevices 2012; 14 6: 1115-27. http://dx.doi.org/10.1007/s10544-012-9677-0

Russo T, D’Amora A, Gloria A, et al. Systematicanalysis of injectable materials and 3D rapid prototyped magnetic scaffolds: from CNS applications to softand hard tissue repair/regeneration. Procedia Engineering 2013; 59: 233-9. http://dx.doi.org/10.1016/j.proeng.2013.05.116

Downloads

Published

2014-06-05

Issue

Section

Articles