Chalcones as an Emerging Lead Molecule for Antimalarial Therapy: A Review

Authors

  • Shweta Sinha Department of Parasitology, Research Block-A, Ground Floor, PGIMER, Chandigarh-160012, India
  • Bikash Medhi Department of Pharmacology, Research Block-B, Fourth Floor, PGIMER, Chandigarh-160012, India
  • Rakesh Sehgal Department of Parasitology, Research Block-A, Ground Floor, PGIMER, Chandigarh-160012, India

DOI:

https://doi.org/10.12970/2308-8044.2013.01.02.1

Keywords:

 Malaria, Plasmodium, activity, structure, cysteine protease.

Abstract

Chalcones (1, 3, diaryl-2-propen-1-ones), are one of the plant secondary metabolite belonging to flavonoid family and has been widely explored in past decennium for its various pharmacological activities including antimalarial activity. Plasmodium aspartate proteases and cysteine proteases are the promising targets in malarial chemotherapy to overcome the drug resistance. Chalcones supposed to show antimalarial activity by inhibiting either Plasmodium aspartate proteases or cysteine proteases. This review covers the mechanism of action, previous reported studies showing antimalarial activity of natural and synthetic chalcones and its derivatives along with future prospects to fight against drug resistant malaria. These compounds provide an option of developing inexpensive, synthetic therapeutic antimalarial agents and may serve as lead compounds for development of drug in near future. 

References

http://www.who.int/malaria/world_malaria_report_2011/WMR2011_chapter1.pdf.

http://www.who.int/malaria/world_malaria_report_2011/WMR2011_chapter1.pdf

WorldMalariaReport2012 Available at.http://www.who.int/ malaria/publications/world_malaria_report_2012/wmr2012_full_report.pdf .

Guidelines for Diagnosis and Treatment of Malaria in India 2009. Available at http://www.mrcindia.org/Guidelines_ for_Diagnosis_Treatment.pdf

White NJ. The treatment of malaria. N Engl J Med 1996; 335: 800-6. http://dx.doi.org/10.1056/NEJM199609123351107

Wellems TE, Plowe CV. Chloroquine-resistant malaria. J Infect Dis 2001; 184: 770-6. http://dx.doi.org/10.1086/322858

Dondorp AM, Nosten F, Yi P, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 2009; 361: 455-67. http://dx.doi.org/10.1056/NEJMoa0808859

Lin JT, Juliano JJ, Wongsrichanalai C, et al. Drug-Resistant Malaria: The Era of ACT. Curr Infect Dis Rep 2010; 12: 165-73. http://dx.doi.org/10.1007/s11908-010-0099-y

Krettli AU, Adebayo JO, Krettli LG. Testing of natural products and synthetic molecules aiming at new antimalarials. Curr Drug Targets 2009; 10: 261-70. http://dx.doi.org/10.2174/138945009787581203

Enserink M. If artemisinin drugs fail, what’s plan B? Science 2010; 328: 846. http://dx.doi.org/10.1126/science.328.5980.846

Meshnick SR. Artemisinin and its derivatives. In Antimalarial Chemotherapy: Mechanisms of Action, Resistance, and New Directions in Drug Discovery; P. J. Rosenthal(ed): Humana Press Totowa NJ: 2001; pp. 191-201. http://dx.doi.org/10.1385/1-59259-111-6:191

Chen M, Theander TG, Christensen SB, et al. Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the malaria parasite Plasmodium falciparum and protects mice from P. yoelii infection. Antimicrob Agents Chemother 1994; 38: 1470-5. http://dx.doi.org/10.1128/AAC.38.7.1470

Nowakowska Z. A review of anti-infective and anti-inflammatory chalcones. Eur J Med Chem 2007; 42: 125-37. http://dx.doi.org/10.1016/j.ejmech.2006.09.019

Lawrence NJ, Patterson RP, Ooi L-L, et al. Effects of α-substitutions on structure and biological activity of anticancer chalcones. Bioorg Med Chem Lett 2006; 16: 5844-8. http://dx.doi.org/10.1016/j.bmcl.2006.08.065

Dhar DN. The Chemistry of Chalcones and Related Compounds, John Wiley, New York 1981.

Burlando B, Verotta L, Cornara L, et al. Herbal Principles in Cosmetics: Properties and Mechanisms of Action. CRC Press, 2010.

Li R, Kenyon GL, Cohen FE, et al. In vitro antimalarial activity of chalcones and their derivatives. J Med Chem 1995; 38: 5031-7. http://dx.doi.org/10.1021/jm00026a010

Ballesteros JF, Sanz MJ, Ubeda A, et al. Synthesis and pharmacological evaluation of 2'-hydroxychalcones and flavones as inhibitors of inflammatory mediators generation. J Med Chem 1995; 38: 2794-7. http://dx.doi.org/10.1021/jm00014a032

Dimmock JR, Kandepu NM, Hetherington M, et al. Cytotoxic activities of Mannich bases of chalcones and related compounds. J Med Chem 1998; 41: 1014-26. http://dx.doi.org/10.1021/jm970432t

Yit CC, Das NP. Cytotoxic effect of butein on human colon adenocarcinoma cell proliferation. Cancer Lett 1994; 82: 65-72. http://dx.doi.org/10.1016/0304-3835(94)90147-3

Wattenberg LW, Coccia JB, Galhaith AR. Inhibition of carcinogen-induced pulmonary and mammary carcinogenesis by chalcone administered after carcinogen exposure. Cancer Lett 1994; 83: 165-9. http://dx.doi.org/10.1016/0304-3835(94)90314-X

Dinkova-Kostova AT, Abeygunawardana C, Talalay P. Chemoprotective properties of phenylpropenoids, bis(benzylidene) cycloalkanones, and related Michael reaction acceptors: correlation of potencies as phase 2 enzyme inducers and radical scavengers. J Med Chem 1998; 41: 5287-96. http://dx.doi.org/10.1021/jm980424s

Bois F, Boumendjel A, Mariotte AM, et al. Synthesis and biological activity of 4-alkoxy chalcones: potential hydrophobic modulators of P-glycoprotein-mediated multidrug resistance. Bioorg Med Chem 1999; 7: 2691-5. http://dx.doi.org/10.1016/S0968-0896(99)00218-7

Go ML, Wu X, Liu XL. Chalcones: an update on cytotoxic and chemoprotective properties. Curr Med Chem 2005; 12: 481-99. http://dx.doi.org/10.2174/0929867053363153

Donnelly JA, Doran HA, Murphy JJ. Chalconedihalides—IV: Steric effects in the cyclization of 2′-acetoxy-6′-methoxyl derivatives. Tetrahedron 1973; 29: 1037-42. http://dx.doi.org/10.1016/0040-4020(73)80057-2

Ferrer JL, Jez JM, Bowman ME, et al. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol 1999; 6: 775-84. http://dx.doi.org/10.1038/11553

Rahman MA. Chalcone. A valuable insight into the recent advances and potential pharmacological activities. Chem Sci J 2011; CSJ-29.

Siddiqui AA, Rahman MA, Shaharyar M, et al. Synthesis and anticonvulsant activity of some substituted 3,5-diphenyl-2-pyrazoline-1-carboxamide derivatives. Chem Sci J 2010; CSJ-8.

World Health Organisation URL: http://www.who.int/emc/ diseases/tryp/index.html

Salfelder K, Eds. Protozoan infection in man, Schwer, Stuttgart 1986; 21.

Feldbaeck NS, Brogger CS, Cruciani G, et al. Antileishmanial chalcones: statistical design, synthesis, and three-dimensional quantitative structure-activity relationship analysis. J Med Chem 1998; 41: 4819-32. http://dx.doi.org/10.1021/jm980410m

Go ML, Liu M, Wilairat P, et al. Antiplasmodial chalcones inhibit sorbitol-induced hemolysis of Plasmodium falciparum-infected erythrocytes. Antimicrob Agents Chemother 2004; 48: 3241-5. http://dx.doi.org/10.1128/AAC.48.9.3241-3245.2004

Frölich S, Schubert C, Bienzle U, et al. In vitro antiplasmodial activity of prenylatedchalcone derivatives of hops (Humuluslupulus) and their interaction with haemin. Antimicrob Chemother 2005; 55: 883-7. http://dx.doi.org/10.1093/jac/dki099

Mi-Ichi F, Miyadera H, Kobayashi T, et al. Parasite mitochondria as a target of chemotherapy: inhibitory effect of licochalcone A on the Plasmodium falciparum respiratory chain. Ann N Y Acad Sci 2005; 1056: 46-54. http://dx.doi.org/10.1196/annals.1352.037

Geyer JA, Keenan SM, Woodard CL, et al. Selective inhibition of Pfmrk, a Plasmodium falciparum CDK, by antimalarial 1, 3-diaryl-2-propenones. Bioorg Med Chem Lett 2009; 19: 1982-5. http://dx.doi.org/10.1016/j.bmcl.2009.02.042

Sriwilaijaroen N, Liu M, Go ML, et al. Plasmepsin II inhibitory activity of alkoxylated and hydroxylatedchalcones. Southeast Asian J Trop Med Public Health 2006; 37(4): 607-12.

Sherman IW. Biochemistry of Plasmodium (malarial parasites). Microbiol Rev 1979; 43: 453-95.

McKerrow JH, Sun E, Rosenthal PJ, et al. The proteases and pathogenicity of parasitic protozoa. Annu Rev Microbiol 1993; 47: 821-53. http://dx.doi.org/10.1146/annurev.mi.47.100193.004133

Bailly E, Jambou R, Savel J, et al. Plasmodium falciparum: Different Sensitivity in vitro to E-64 (Cysteine Protease Inhibitor) and Pepstatin A (Aspartyl Protease Inhibitor). J Protozool 1992; 39: 593-9. http://dx.doi.org/10.1111/j.1550-7408.1992.tb04856.x

Dluzewski AR, Rangachari K, Wilson RJM, et al. Plasmodium falciparum: protease inhibitors and inhibition of erythrocyte invasion. Exp Parasitol 1986; 62: 416-22. http://dx.doi.org/10.1016/0014-4894(86)90050-0

Rosenthal PJ, McKerrow JH, Aikawa M, et al. A malarial cysteine protease is necessary for hemoglobin degradation by Plasmodium falciparum. J Clin Invest 1988; 82: 1560-6. http://dx.doi.org/10.1172/JCI113766

Rosenthal PJ, Lee GK, Smith RE. Inhibition of a Plasmodium vinckei cysteine proteinase cures murine malaria. J Clin Invest 1993; 91: 1052-6. http://dx.doi.org/10.1172/JCI116262

Vander Jagt DL, Hunsaker LA, Campos NM. Characterization of a hemoglobin-degrading, low molecular weight protease from Plasmodium falciparum. Mol Biochem Parasitol 1986; 18: 389-400. http://dx.doi.org/10.1016/0166-6851(86)90095-2

Shenai BR, Sijwali PS, Singh A, et al. Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine protease and essential hemoglobinase of Plasmodium falciparum. J Biol Chem 2000; 275: 29000-10. http://dx.doi.org/10.1074/jbc.M004459200

Orjih AU. On the mechanism of hemozoin production in malaria parasites: activated erythrocyte membranes promote beta-hematin synthesis. Exp Biol Med (Maywood) 2001; 226: 746-52.

Li R, Chen X, Gong B, et al. Structure-based design of parasitic protease inhibitors. Bioorg Med Chem 1996; 4: 1421-7. http://dx.doi.org/10.1016/0968-0896(96)00136-8

Mishra N, Arora P, Kumar B, et al. Synthesis of novel substituted 1,3-diaryl propenone derivatives and their antimalarial activity in vitro. Eur J Med Chem 2008; 43: 1530-5. http://dx.doi.org/10.1016/j.ejmech.2007.09.014

Dorn A, Stoffel R, Matile H, et al. Malarial Haemozoin/beta-haematin supports haem polymerization in the absence of protein. Nature 1996; 374: 269-71. http://dx.doi.org/10.1038/374269a0

Renan R. Identification of traditional Chinese material medica; Shanghai Scientific and Technical Publishing House, Shanghai, People's Republic of China 1986; pp. 109-113

Saitoh T, Shibata S. New type chalcones from licorice root. Tetrahedron Lett 1975; 50: 4461-2. http://dx.doi.org/10.1016/S0040-4039(00)91092-X

Chen M, Christensen S, Zhai L, et al. The novel oxygenated chalcone, 2,4-dimethoxy-4'-butoxychalcone, exhibits potent activity against human malaria parasite Plasmodium falciparum in vitro and rodent parasites Plasmodium berghei and Plasmodium yoelii in vivo. J Infect Dis 1997; 176: 1327-33. http://dx.doi.org/10.1086/514129

Zhai L, Blom J, Chen M, et al. The antileishmanial agent licochalcone A interferes with the function of parasite mitochondria. Antimicrob Agents Chemother 1995; 39: 2724-48. http://dx.doi.org/10.1128/AAC.39.12.2742

Liu M, Wilairat P, Go ML. Antimalarial alkoxylated and hydroxylatedchalcones [corrected]: structure-activity relationship analysis. J Med Chem 2001; 44: 4443-52. http://dx.doi.org/10.1021/jm0101747

Ziegler HL, Hansen HS, Staerk D, et al. The antiparasitic compound licochalcone A Is a potent echinocytogenic agent that modifies the erythrocyte membrane in the concentration range where antiplasmodial activity is observed. Antimicrob Agents Chemother 2004; 48: 4067-71. http://dx.doi.org/10.1128/AAC.48.10.4067-4071.2004

Cooke BM, Mohandas N, Coppel RL. The malaria-infected red blood cell: structural and functional changes. Adv Parasitol 2001; 50: 1-86. http://dx.doi.org/10.1016/S0065-308X(01)50029-9

Desai AS, Bezrukov SM, Zimmerberg J. A voltage-dependent channel involved in nutrient uptake by red blood cells infected with the malaria parasite. Nature 2000; 406: 1001-5. http://dx.doi.org/10.1038/35023000

Domínguez JN, Charris JE, Lobo G, et al. Synthesis of quinolinylchalcones and evaluation of their antimalarial activity. Eur J Med Chem 2001; 36: 555-0. http://dx.doi.org/10.1016/S0223-5234(01)01245-4

Yenesew A, Induli M, Derese S, et al. Anti-plasmodial flavonoids from the stem bark of Erythrinaabyssinica. Phytochemistry 2004; 65: 3029-32. http://dx.doi.org/10.1016/j.phytochem.2004.08.050

Narender T, Shweta, Tanvir K, et al. Prenylatedchalcones isolated from Crotalaria genus inhibits in vitro growth of the human malaria parasite Plasmodium falciparum. Med Chem Lett 2005; 15: 2453-5. http://dx.doi.org/10.1016/j.bmcl.2005.03.081

Valla A, Valla B, Cartier D, et al. New syntheses and potential antimalarial activities of new ‘retinoid-like chalcones. Eur J Med Chem 2006; 41: 142-6. http://dx.doi.org/10.1016/j.ejmech.2005.05.008

Motta LF, Gaudio AC, Takahata Y. Quantitative structure-activity relationships of a series of chalcone derivatives (1,3-diphenyl-2-propen-1-one) as anti-Plasmodium falciparum agents (antimalaria agents). Int Elect J Mol Des 2006; 5: 555-69.

Ngamenia B, Watchuenga J, Boyomb FF, et al. Antimalarial prenylatedchalcones from the twigs of Dorsteniabarterivar. Subtriangulari. ARKIVOC 2007; (Xiii): 116-23.

Lim SS, Kim HS, Lee DU. In vitro antimalarial activity of flavonoids and chalcones. Bull Kor Chem Soc 2007; 28: 2495-7. http://dx.doi.org/10.5012/bkcs.2007.28.12.2495

Awasthi SK, Mishra N, Kumar B, et al. Potent antimalarial activity of newly synthesized substituted chalcone analogs in vitro. Med Chem Res 2009; 18: 407-20. http://dx.doi.org/10.1007/s00044-008-9137-9

Bhattacharya A, Lokesh CM, Manish S, et al. Antimalarial pharmacodynamics of chalcone derivatives in combination with artemisinin against Plasmodium falciparum in vitro. Eur J Med Chem 2009; 44: 3388-93. http://dx.doi.org/10.1016/j.ejmech.2009.02.008

Doerig C, Billker O, Haystead T, et al. Protein kinases of malaria parasites: an update. Trends Parasitol 2008; 24: 570-7. http://dx.doi.org/10.1016/j.pt.2008.08.007

Guantai EM, Ncokazi K, Egan TJ, et al. Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds. Bioorg Med Chem 2010; 18: 8243-56. http://dx.doi.org/10.1016/j.bmc.2010.10.009

Acharya BN, Saraswat D, Tiwari M, et al. Synthesis and antimalarial evaluation of 1, 3, 5-trisubstituted pyrazolines. Eur J of Med Chem 2010; 45: 430-8. http://dx.doi.org/10.1016/j.ejmech.2009.10.023

Domínguez JN, Gamboa de Domínguez N, Rodrigues J, et al. Synthesis and antimalarial activity of urenylBis-chalcone in vitro and in vivo. J Enzyme Inhib Med Chem 2012; 1-7. [Epub ahead of print].

Yadav N, Dixit SK, Bhattacharya A, et al. Antimalarial activity of newly synthesized chalcone derivatives in vitro. Chem Biol Drug Des 2012; 80: 340-7. http://dx.doi.org/10.1111/j.1747-0285.2012.01383.x

Tadigoppula N, Korthikunta V, Gupta S, et al. Synthesis and insight into the structure−activity relationships of chalcones as antimalarial agents. J Med Chem 2013; 56: 31-45. http://dx.doi.org/10.1021/jm300588j

Downloads

Published

2013-08-02

Issue

Section

Articles