Synthesis of Biologically Active α-Aminophosphonates
DOI:
https://doi.org/10.12970/2308-8044.2013.01.01.5Keywords:
α-Aminophosphonates, antimicrobial activity, antioxidant activity, anticancer activityAbstract
Highly convergent Synthesis of α-aminophosphonates were most conveniently achieved using organophosphorus chemistry. Synthesis of α-aminophosphonates were accomplished by three-component coupling of carbonyl, amine and hydrophosphoryl compounds. These aminophosphonates exhibited promising antimicrobial, antioxidant and anticancer activity. Some recent developments and applications to the synthesis of biologically active α-aminophosphonates are also included.
References
Moonen K, Laureyn I, Stevens CV. Synthetic methods for azaheterocyclic phosphonates and their biological activity. Chem Rev 2004; 104(12): 6177-15. http://dx.doi.org/10.1021/cr030451c
Laureyn I, Stevens CV, Soroka M, Malyse P. Synthesis of - amino- ,-unsaturated phosphonates via a substitutionelimination sequence of dibromophosphonates. Arkivoc 2003; iv: 102-15. http://dx.doi.org/10.3998/ark.5550190.0004.409
Engel R. Phosphonates as analogues of natural phosphates. Chem Rev 1977; 77(3): 349-67. http://dx.doi.org/10.1021/cr60307a003
Abdel-Monem WR. Synthesis and antimicrobial evaluation of some new polyheterocyclic systems containing 1,2,4-triazine moiety. Eur J Chem 2010; 1(3): 168-72. http://dx.doi.org/10.5155/eurjchem.1.3.168-172.29
Schug KA, Lindner W. Noncovalent binding between guanidinium and anionic group: Focus on biological and synthetic based arginine/guanidinium interactions with phosph[on]ate and sulf[on]ate residues. Chem Rev 2005; 105(1): 67-114. http://dx.doi.org/10.1021/cr040603j
Wrobleski ST, Lin S, Hynes JJr, Wu H, Pitt S, et al. Synthesis and SAR of new pyrrolo[2,1-f][1,2,4]triazines as potent p38 MAP kinase inhibitors. Bioorg Med Chem Lett 2008; 18(8): 2739-44. http://dx.doi.org/10.1016/j.bmcl.2008.02.067
Maier L, Diel PJ. Organic phosphorus compounds 941 preparation, physical and biological properties of aminoarylmethylphosphonic- and-phosphonous acids. Phosphorous Sulphur and Silicon 1991; 57(1-2): 57-64. http://dx.doi.org/10.1080/10426509108038831
Atherton FR, Hassall CH, Lambert RW. Synthesis and structure-activity relationships of antibacterial phosphonopeptides incorporating (1-aminoethyl)phosphonic acid and (aminomethyl) phosphonic acid. J Med Chem 1986; 29(1): 29-40. http://dx.doi.org/10.1021/jm00151a005
Kafarski P, Lejczak B. Aminophosphonic acids of potential medical importance. Curr Med Chem Anticancer Agents. 2001; 1(3): 301-12. http://dx.doi.org/10.2174/1568011013354543
Kafarski P, Lejczak B. Biological activity of aminophosphonic acids. Phosphorous Sulphur and Silicon 1991; 63(1-2): 193- 215. http://dx.doi.org/10.1080/10426509108029443
Hirschmann R, Smith AB, Taylor CM, Benkovic PA, Taylor SD et al. Peptide synthesis catalyzed by an antibody containing a binding site for variable amino acids. Science 1994; 265(5169): 234-37. http://dx.doi.org/10.1126/science.8023141
Bader A. How to find a great herbicide. Aldrichim Acta 1988; 21(1): 15.
Atherton FR, Hassal CH, Lambert RW. Synthesis and structure-activity relationships of antibacterial phosphonopeptides incorporating (1-aminoethyl)phosphonic acid and (aminomethyl)phosphonic acid. J Med Chem 1986; 29(1): 29-40. http://dx.doi.org/10.1021/jm00151a005
Allen MC, Fuhrer W, Tuck B, Wade R, Wood JM. Renin inhibitors. Synthesis of transition-state analog inhibitors containing phosphorus acid derivatives at the scissile bond. J Med Chem 1989; 32(7): 1652-61. http://dx.doi.org/10.1021/jm00127a041
Yokomatsu T, Yoshida Y, Shibuya S. Stereoselective synthesis of .beta.-oxygenated .alpha.-hydroxyphosphonates by Lewis acid-mediated stereoselective hydrophosphonylation of alpha-benzyloxy aldehydes. An application to the synthesis of phosphonic acid analogs of oxyamino acids. J Org Chem 1994; 59(25): 7930-33. http://dx.doi.org/10.1021/jo00104a064
Chandrasekhar S, Narsihmulu Ch, Shameen Sultana S, Saritha B, Jayaprakash S. Solvent and catalyst free threecomponent coupling of carbonyl compounds, amines and triethylphosphite; a new synthesis of -aminophosphonates. Synlett 2003; 4: 505-506. http://dx.doi.org/10.1055/s-2003-37508
Takahashi H, Yoshioka M, Imai N, Onimura K, Kobayashi S. Simple and improved preparation of -aminophosphonic acid derivatives, key building blocks of phosphonopeptides. Synthesis 1994; 8: 763-64. http://dx.doi.org/10.1055/s-1994-25564
Heydari A, Karimian A, Ipaktschi J. Lithium perchlorate / diethylether catalyzed aminophosphonation of aldehydes. Tetrahedron Lett 1998; 39(37): 6729-32. http://dx.doi.org/10.1016/S0040-4039(98)01411-7
Azizi N, Saidi MR. Lithium perchlorate-catalyzed threecomponent coupling: a facile and general method for the synthesis of -aminophosphonates under solvent-free conditions. Eur J Org Chem 2003; 4630-33. http://dx.doi.org/10.1002/ejoc.200300479
Chandrasekhar S, Prakash SJ, Jagadeshwar V, Narsihmulu Ch. Three component coupling catalyzed by TaCl5–SiO2: synthesis of -amino phosphonates. Tetrahedron Lett 2001; 42(32): 5561-63. http://dx.doi.org/10.1016/S0040-4039(01)01053-X
Ranu BC, Hajra A, Jana U. General procedure for the synthesis of -amino phosphonates from aldehydes and ketones using indium(III) chloride as a catalyst. Org Lett 1999; 1(8): 1141-43. http://dx.doi.org/10.1021/ol990079g
Lee S, Park JH, Kang J, Lee JK. Lanthanide triflate-catalyzed three component synthesis of -amino phosphonates in ionic liquids. a catalyst reactivity and reusability study. J Chem Soc Chem Commun 2001; 1698-99.
Akiyama T, Sanada M, Fuchibe K. Brønsted acid-mediated synthesis of -amino phosphonates under solvent-free conditions. Synlett 2003; 1463-64. http://dx.doi.org/10.1055/s-2003-40858
Schrader G. The modification of biological activity by structure changes in organophos- phorus compounds. World Review Pest Control 1965; 4: 140-44.
Kategaonkar AH, Sonar SS, Sapkal SB, Gawali VU, Shingate BB, Shingare MS. Synthesis and in vitro antimicrobial activity of new -aminophosphonates via tetrazolo[1,5-a] quinoline derivatives. Phosphorous Sulphur and Silicon 2010; 185(10): 2113-21. http://dx.doi.org/10.1080/10426500903530867
Pokalwar RU, Hangarge RV, Madje BR, Ware MN, Shingare MS. Simple and high yielding synthesis of new - aminophosphonates from imines. Phosphorus Sulfur and Silicon 2008; 183(6): 1461-70. http://dx.doi.org/10.1080/10426500701681532
Badadhe PV, Chavan NM, Ghotekar DS, Mandhane PG, Joshi RS, Gill CH. Synthesis, characterization and biological screening of some novel thiazolidin-4-one and - aminophosphonate derivatives. Phosphorous Sulphur and Silicon 2011; 186(10): 2021-32. http://dx.doi.org/10.1080/10426507.2010.550268
Abdel-Megeed MF, Badr BE, Azaam MM, El-Hiti GA. Synthesis, antimicrobial and anticancer activities of a novel series of diphenyl 1-(pyridin-3-yl)ethylphosphonates. Bioorg Med Chem 2012; 20(7): 2252-58. http://dx.doi.org/10.1016/j.bmc.2012.02.015
Nizamov IS, Yambushev FD, Nizamov ID, Voloshina AD, Alfonsov VA. The Kabachnik–Fields and Pudovik reactions on the basis of E,Z-citral and its imines and (R,S)-citronellal. Heteroatom Chem 2013; 24(1): 36-42. http://dx.doi.org/10.1002/hc.21060
Reddy SS, Rao VK, Krishna BS, Reddy CS, Rao PV, Raju CN. Synthesis, antimicrobial, and antioxidant activity of new -aminophosphonates. Phosphorous Sulphur and Silicon 2011; 186(7): 1411-21. http://dx.doi.org/10.1080/10426507.2010.514682
Shafakat Ali N, Zakir S, Patel M, Farooqui M. Synthesis of new -aminophosphonate system bearing indazole moiety and their biological activity. Eur J Med Chem 2012; 50: 39- 43. http://dx.doi.org/10.1016/j.ejmech.2012.01.024
El-Barbary AA, El-Shehawy AA, Abdo NI. Synthesis and antimicrobial activities of some 6-methyl-3-thioxo-2,3- dihydro-1,2,4-triazine derivatives. Phosphorous Sulphur and Silicon 2013. http://dx.doi.org/10.1080/10426507.2012.755972
Prasad GS, Krishna JR, Manjunath M, Reddy OVS, Krishnaiah M et al. Synthesis, NMR, X-ray crystallography and bioactivity of some -aminophosphonates. Arkivoc 2007; xiii: 133-41. http://dx.doi.org/10.3998/ark.5550190.0008.d16
Rao AJ, Rao PV, Rao VK, Mohan C, Raju CN, et al. Microwave assisted one-pot synthesis of novel - aminophosphonates and their biological activity. Bull Korean Chem Soc 2010; 31(7): 1863-68. http://dx.doi.org/10.5012/bkcs.2010.31.7.1863
Balakrishna A, Reddy MVN, Rao PV, Kumar MA, Kumar BS, et al. Synthesis and bio-activity evaluation of tetraphenyl(phenylamino) methylene bisphosphonates as antioxidant agents and as potent inhibitors of osteoclasts in vitro. Eur J Med Chem 2011; 46(5): 1798-802. http://dx.doi.org/10.1016/j.ejmech.2011.02.038
Choi CW, Kim SC, Hwang SS, choi BK, Ahn HJ, et al. Antioxidant activity and free radical scavenging capacity between korean medicinal plants and flavonoids by assayguided comparison. Plant Sci 2002; 163(6): 1161-68. http://dx.doi.org/10.1016/S0168-9452(02)00332-1
Reddy GS, Rao KUM, Sundar CS, Sudha SS, Haritha B, et al. Neat synthesis and antioxidant activity of - aminophosphonates. Arabian J Chem 2013; in press. http://dx.doi.org/10.1016/j.arabjc.2013.01.004
Mungara AK, Park Y-K, Lee KD. Synthesis and antiproliferative activity of novel -aminophosphonates. Chem Pharm Bull 2012; 60(12): 1531-37.
Jin L, Song B, Zhang G, Xu R, Zhang S, et al. Synthesis, xray crystallographic analysis, and antitumor activity of N- (benzothiazole-2-yl)-1-(fluorophenyl)-O,O-dialkyl- -aminophosphonates. Bioorg Med Chem Lett 2006; 16(6): 1537-43. http://dx.doi.org/10.1016/j.bmcl.2005.12.041
Song B-A, Zhang G-P, Yang S, Hu D-Y, Jin L-H. Synthesis of N-(4-bromo-2-trifluoro- methylphenyl)-1-(2-fluorophenyl)- O,O-dialkyl- -aminophosphonates under ultrasonic irradiation. Ultrason Sonochem 2006; 13(2): 139-42. http://dx.doi.org/10.1016/j.ultsonch.2005.03.003
Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 1986; 89(2): 271-77. http://dx.doi.org/10.1016/0022-1759(86)90368-6
Rao X, Song Z, He L. Synthesis and antitumor activity of novel -aminophosphonates from diterpenic dehydroabietylamine. Heteroatom Chem 2008; 19(5): 512- 16. http://dx.doi.org/10.1002/hc.20471
Wang S, MaoW, She Z, Li C, Yang DQ, et al. Synthesis and biological evaluation of 12 allenic aromatic ethers. Bioorg Med Chem Lett 2007; 17(10): 2785-88. http://dx.doi.org/10.1016/j.bmcl.2007.02.084
Geary WJ. The use of conductivity measurements in organic solvents for the characterization of coordination compounds. Coord Chem Rev 1971; 7(1): 81-122. http://dx.doi.org/10.1016/S0010-8545(00)80009-0
Kraicheva I, Tsacheva I, Vodenicharova E, Tashev E, Tosheva T, et al. Synthesis, antiproliferative activity and genotoxicity of novel anthracene-containing aminophosphonates and a new anthracene-derived Schiff base. Bioorg Med Chem 2012; 20(1): 117-24. http://dx.doi.org/10.1016/j.bmc.2011.11.024
Reddy CB, Kumar KS, Kumar MA, Reddy MVN, Krishna BS, et al. PEG-SO3H catalyzed synthesis and cytotoxicity of - aminophosphonates. Eur J Med Chem 2012; 47(1): 553-59. http://dx.doi.org/10.1016/j.ejmech.2011.11.026
Ning L, Wang W, Liang Y, Peng H, Fu L, He H. Synthesis and cytotoxicity of O,O'-dialkyl {[2-(substituted phenoxy) acetamido](substituted phenyl)methyl}phosphonates. Eur J Med Chem 2012; 48: 379-84. http://dx.doi.org/10.1016/j.ejmech.2011.12.014
Rezaei Z, Firouzabadi H, Iranpoor N, Ghaderi A, Jafari MR, et al. Design and one-pot synthesis of -aminophosphonates and bis( -aminophosphonates) by iron(III) chloride and cytotoxic activity. Eur J Med Chem 2009; 44(11): 4266-75. http://dx.doi.org/10.1016/j.ejmech.2009.07.009
Lavielle G, Hautefaye P, Schaeffer C, Boutin JA, Cudennec CA, Pierre A. New -amino phosphonic acid derivatives of vinblastine: chemistry and antitumor activity. J Med Chem 1991; 34(7): 1998-2003. http://dx.doi.org/10.1021/jm00111a012
Barnett CJ, Cullinan GJ, Gerzon K, Hoying RC, Jones WE, et al. Structure-activity relations hips of dimeric catharanthus alkaloids. 1. deacetylvinblastine amide (vindesine) sulfate. J Med Chem 1978; 21(1): 88-96. http://dx.doi.org/10.1021/jm00199a016
Rao KSPB, Collard M-PM, Dejonghe JPC, Atassi G, Hannart JA, Trouet A. Vinblastin-23-oyl amino acid derivatives: chemistry, physicochemical data, toxicity, and antitumor activities against P388 and L1210 leukemias. J Med Chem 1985; 28(8): 1079-88. http://dx.doi.org/10.1021/jm00146a017
Pierre A, Kraus-Berthier L, Atassi G, Gros S, Poupon M-F, et al. Preclinical antitumor activity of a new vinca alkaloid derivative, S 12363. Cancer Res 1991; 51(9): 2312-18.