Medicinal Chemistry Approaches to Neglected Diseases Drug Discovery

Authors

  • Leonardo G. Ferreira Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de SãoPaulo, Av. João Dagnone,1100, 13563-120, São Carlos-SP, Brazil
  • Adriano D. Andricopulo Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de SãoPaulo, Av. João Dagnone,1100, 13563-120, São Carlos-SP, Brazil

DOI:

https://doi.org/10.12970/2308-8044.2014.02.01.4

Keywords:

 Neglected diseases, Drug design, Virtual screening, Molecular dynamics, QSAR, Molecular modeling, Pharmacophore, LBDD, SBDD, Inhibitor.

Abstract

The prevalence of a variety of neglected diseases is an increasing serious public health problem in developing countries, particularly in the poorest and most remote areas with very little or no access to medical care. The consequences in terms of morbidity and mortality due to these infections are devastating and have a major social and economic impact in several relevant aspects. According to the World Health Organization, these diseases are one of the most important scientific and technological challenges that face humankind in the 21st century. Although they affect more than a billion people around the world, there are only a few safe and effective drugs currently available. The urgent need for new drugs has led pharmaceutical and academic R&D centers to employ more knowledge-based platforms, as an unprecedented opportunity to make a significant impact on the lives of disadvantaged people through the discovery of novel therapeutic options. In this perspective we discuss the successful application of modern medicinal chemistry approaches to neglected diseases. 

References

World Health Organization. First WHO report on neglected tropical diseases: working to overcome the global impact of neglected tropical diseases.http://whqlibdoc.who.int/ publications/2010/9789241564090_eng.pdf. (accessed October 10, 2013).

Feasey N, Wansbrough-Jones M, Mabey DCW, Solomon AW. Neglected tropical diseases. Brit Med Bull 2010; 93: 179-200. http://dx.doi.org/10.1093/bmb/ldp046

Fenton A. Worms and germs: the population dynamic consequences of microparasite-macroparasite co-infection. Parasitology 2008; 135: 1545-560.

Pedrique B, Strub-Wourgaft N, Some C, et al. The drug and vaccine landscape for neglected diseases (2000–11): a systematic assessment. The Lancet Global Health 2013; 1: e371-9. http://dx.doi.org/10.1016/S2214-109X(13)70078-0

World Health Organization. Pipeline grows for neglected diseases research and development (R&D). http://www. who.int/tdr/news/2013/pipeline_ntd/en/. (accessed October 24, 2013).

Nwaka S, Hudson A. Innovative lead discovery strategies for tropical diseases. Nat Rev Drug Discov 2006; 5: 941-55. http://dx.doi.org/10.1038/nrd2144

Fenwick A. The global burden of neglected tropical diseases. Public Health 2012; 126: 233-6. http://dx.doi.org/10.1016/j.puhe.2011.11.015

World Health Organization.The global burden of disease 2004 update. http://www.who.int/entity/healthinfo/global_ burden_disease/GBD_report_2004update_full.pdf. (accessed October 24, 2013).

Drugs for Neglected Diseases Initiative. 2011 Annual report towards sustainable change for neglected patients. http://www.dndi.org/images/stories/annual_report/2011/DNDi _Annual%20report%202011_low-res.pdf. (accessed September 11, 2013).

Ridley RG, Fletcher, ER. Making a difference 30 years of TDR. Nat Rev Microbiol 2008; (6)5: 401-7. http://dx.doi.org/10.1038/nrmicro1899

Olsson T, Oprea TI. Cheminformatics: a tool for decisionmakers in drug discovery. Curr Opin Drug Discov Devel 2001; 4: 308-13.

Paul SM, Mytelka DS, Dunwiddie CT, et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov 2010; 9: 203-14.

Mandal S, Moudgil MN, Mandal SK. Rational drug design. Eur J Pharmacol 2009; 625: 90-100. http://dx.doi.org/10.1016/j.ejphar.2009.06.065

Bajorath J. Integration of virtual and high-throughput screening. Nat Rev Drug Discov 2002; 1: 882-94. http://dx.doi.org/10.1038/nrd941

Scior T, Bender A, Tresadern G, et al. Recognizing pitfalls in virtual screening: a critical review. J Chem Inf Model 2012; 52: 867-81. http://dx.doi.org/10.1021/ci200528d

Macarron R, Banks MN, Bojanic D, et al. Impact of highthroughput screening in biomedical research. Nat Rev Drug Discov 2011; 10: 188-95. http://dx.doi.org/10.1038/nrd3368

Lang M, Seifert MH, Wolf KK, et al. Discovery and hit-to-lead optimization of novel allosteric glucokinase activators. Bioorg Med Chem Lett 2011; 21: 5417-22. http://dx.doi.org/10.1016/j.bmcl.2011.06.128

Jorgensen WL. Efficient drug lead discovery and optimization. Acc Chem Res 2009; 42: 724-33. http://dx.doi.org/10.1021/ar800236t

Lewis RA. A general method for exploiting QSAR models in lead optimization. J Med Chem 2005; 48: 1638-48. http://dx.doi.org/10.1021/jm049228d

Kodadek T. The rise, fall and reinvention of combinatorial chemistry. Chem Commun 2011; 47: 9757-63. http://dx.doi.org/10.1039/c1cc12102b

Xiang M, Cao Y, Fan W, Chen L, Mo Y. Computer-aided drug design: lead discovery and optimization. Comb Chem High Throughput Screen 2012; 15: 328-37. http://dx.doi.org/10.2174/138620712799361825

Du J, Cross TA, Zhou HX. Recent progress in structurebased anti-influenza drug design. Drug Discov Today 2012; 17: 1111-20. http://dx.doi.org/10.1016/j.drudis.2012.06.002

Villoutreix BO, Eudes R, Miteva MA. Structure-based virtual ligand screening recent success stories. Comb Chem High Throughput Screen 2009; 12: 1000-16. http://dx.doi.org/10.2174/138620709789824682

Chaudhuri R, Carrillo O, Laughton CA, Orozco M. Application of drug-perturbed essential dynamics/molecular dynamics (ED/MD) to virtual screening and rational drug design. J Chem Theory Comput 2012; 8: 2204-14. http://dx.doi.org/10.1021/ct300223c

Blaney J. A very short history of structure-based design: how did we get here and where do we need to go? J Comput Aided Mol Des 2012; 26: 13-14. http://dx.doi.org/10.1007/s10822-011-9518-x

Speck-Planche A, Luan F, Cordeiro MN. Role of ligandbased drug design methodologies toward the discovery of new anti-Alzheimer agents: futures perspectives in fragmentbased ligand design. Curr Med Chem 2012; 19: 1635-45. http://dx.doi.org/10.2174/092986712799945058

Abdo A, Saeed F, Hamza H, Ahmed A, Salim N. Ligand expansion in ligand-based virtual screening using relevance feedback. J Comput Aided Mol Des 2012; 26: 279-87. http://dx.doi.org/10.1007/s10822-012-9543-4

Bacilieri M, Moro S. Ligand-based drug design methodologies in drug discovery process an overview. Curr Drug Discov Technol 2006; 3: 155-65. http://dx.doi.org/10.2174/157016306780136781

Verma J, Khedkar VM, Coutinho EC. 3D-QSAR in drug design a review. Curr Top Med Chem 2010; 10: 95-115. http://dx.doi.org/10.2174/156802610790232260

Adhikari N, Halder AK, Mondal C, Jha T. Ligand based validated comparative chemometric modeling and pharmacophore mapping of aurone derivatives as antimalarial agents. Curr Comput Aided Drug Des 2013; 9: 417-32. http://dx.doi.org/10.2174/15734099113099990014

Taft CA, Da Silva VB, Da Silva CH. Current topics in computer-aided drug design. J Pharm Sci 2008; 97: 1089-98. http://dx.doi.org/10.1002/jps.21293

Jónsdóttir SO, Jorgensen FS, Brunak S. Prediction methods and databases within chemoinformatics emphasis on drugs and drug candidates. Bioinformatics 2005; 21: 2145-60. http://dx.doi.org/10.1093/bioinformatics/bti314

Pizarro JC, Hills T, Senisterra G, et al. Exploring the Trypanosoma brucei Hsp83 potential as a target for structure guided drug design. PLoS Negl Trop Dis 2013; 7: e2492. http://dx.doi.org/10.1371/journal.pntd.0002492

Berman HM, Kleywegt GJ, Nakamura H, Markley JL. How community has shaped the protein data bank. Structure 2013; 21: 1485-91. http://dx.doi.org/10.1016/j.str.2013.07.010

Mallari JP, Shelat AA, Kosinski A, et al. Structure-guided development of-selective TbcatB inhibitors. J Med Chem 2009; 52: 6489-93. http://dx.doi.org/10.1021/jm900908p

Faver JC, Ucisik MN, Yang W, Merz Jr KM. Computer-aided drug design: using numbers to your advantage. ACS Med Chem Lett 2013; 4: 812-14. http://dx.doi.org/10.1021/ml4002634

Lyne PD. Structure-based virtual screening an overview. Drug Discov Today 2002; 7: 649-57. http://dx.doi.org/10.1016/S1359-6446(02)02483-2

Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 2011; 7: 146-57. http://dx.doi.org/10.2174/157340911795677602

Yuriev E, Ramsland PA. Latest developments in molecular docking: 2010–2011 in review. J Mol Recognit 2013; 26: 215- 39. http://dx.doi.org/10.1002/jmr.2266

Azevedo LS, Moraes FP, Xavier MM, et al. Recent progress of molecular docking simulations applied to development of drugs. Curr Bioinform 2012; 7: 352-65. http://dx.doi.org/10.2174/157489312803901063

Harvey MJ, de Fabritiis G. High-throughput molecular dynamics the powerful new tool for drug discovery. Drug Discov Today 2012; 17: 1059-62. http://dx.doi.org/10.1016/j.drudis.2012.03.017

Lin JH. Accommodating protein flexibility for structure-based drug design. Curr TopMed Chem 2011; 11: 171-8. http://dx.doi.org/10.2174/156802611794863580

Durrant JD, Mccammon JA. Molecular dynamics simulations and drug discovery. BMC Biol 2011; 9: 1-9. http://dx.doi.org/10.1186/1741-7007-9-71

Nichols SE, Baron R, Ivetac A, Mccammon JA. Predictive power of molecular dynamics receptor structures in virtual screening. J Chem Inf Model 2011; 51: 1439-46. http://dx.doi.org/10.1021/ci200117n

Buch I, Giorgino T, De Fabritiis G. Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc Natl Acad Sci 2011; 108: 10184- 9. http://dx.doi.org/10.1073/pnas.1103547108

Park J, Czapla L, Amaro RE. Molecular simulations of aromatase reveal new insights into the mechanism of ligand binding. J Chem Inf Model 2013; 53: 2047-56. http://dx.doi.org/10.1021/ci400225w

Sapre NS, Jain N, Gupta SA, et al. Hybrid QSAR studies on dihydro-alkoxy-benzyl-oxopyrimidines (DABO) derivatives: a ligand based drug design (LBDD) approach. Int J Chem 2013; 1: 55-76.

Caporuscio F, Tafi A. Pharmacophore modelling: a forty year old approach and its modern synergies. Curr Med Chem 2011; 18: 2543-53. http://dx.doi.org/10.2174/092986711795933669

Yang SY. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 2010; 15: 444-50.

Funatsu K, Miyao T, Arakawa M. Systematic generation of chemical structures for rational drug design based on QSAR models. Curr Comput Aided Drug Des 2011; 7: 1-9. http://dx.doi.org/10.2174/157340911793743556

Concu R, Podda GM Ubeira F, Gonzalez-Diaz H. Review of QSAR models for enzyme classes of drug targets: theoretical background and applications in parasites, hosts and other organisms. Curr Pharm Des 2010; 16: 2710-23. http://dx.doi.org/10.2174/138161210792389207

Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol Inf 2010; 29: 476-88. http://dx.doi.org/10.1002/minf.201000061

Xiang M, Cao Y, Fan W, Chen L, Mo Y. Computer-aided drug design: lead discovery and optimization. Comb Chem High Throughput Screen 2012; 15: 328-37. http://dx.doi.org/10.2174/138620712799361825

Geppert H, Vogt M, Bajorath J. Current trends in ligandbased virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J Chem Inf Model 2010; 50: 205-16. http://dx.doi.org/10.1021/ci900419k

Krüger DM, Evers A. Comparison of structure and ligand based virtual screening protocols considering hit list complementarity and enrichment factors. Chem Med Chem 2010; 5: 148-58. http://dx.doi.org/10.1002/cmdc.200900314

Stahura FL, Bajorath J. New methodologies for ligand-based virtual screening. Curr Pharm Des 2005; 11: 1189-202. http://dx.doi.org/10.2174/1381612053507549

Wilson GL, Lill MA. Integrating structure-based and ligandbased approaches for computational drug design. Future Med Chem 2011; 3: 735-50. http://dx.doi.org/10.4155/fmc.11.18

Zhang L, Fourches D, Sedykh A, et al. Discovery of novel antimalarial compounds enabled by qsar-based virtual screening. J Chem Inf Model 2013; 53: 475-92. http://dx.doi.org/10.1021/ci300421n

Pauli I, dos Santos RN, Rostirolla DC, et al. Discovery of new inhibitors of Mycobacterium tuberculosis Inha enzyme using virtual screening and a 3D-pharmacophore-based approach. J Chem Inf Model 2013; 53: 2390-401. http://dx.doi.org/10.1021/ci400202t

Ferreira RS, Simeonov A, Jadhav A, et al. Complementarity between a docking and a high-throughput screen in discovering new cruzain inhibitors. J Med Chem 2010; 53: 4891-905. http://dx.doi.org/10.1021/jm100488w

Castilho MS, Postigo MP, Pereira HM, Oliva G, Andricopulo AD. Structural basis for selective inhibition of purine nucleoside phosphorylase from Schistosoma mansoni: kinetic and structural studies. Bioorg Med Chem 2010; 18: 1421-7. http://dx.doi.org/10.1016/j.bmc.2010.01.022

Amaro RE, Schnaufer A, Interthal H, Hol W, Stuart, KD, McCammon JA. Discovery of drug-like inhibitors of an essential RNA-editing ligase in Trypanosoma brucei. Proc Natl Acad Sci USA 2008; 105: 17278-83. http://dx.doi.org/10.1073/pnas.0805820105

Downloads

Published

2014-04-05

Issue

Section

Articles