Dominant-Negative Constructs of IRE-1alpha as an Effective way to Suppression of Tumor Growth through the Inhibition of Cell Proliferation 

Authors

  • Dmytro O. Minchenko Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine and Department of Pediatrics, Bohomolets National Medical University, Kyiv, Ukraine

DOI:

https://doi.org/10.12970/2308-8044.2015.03.01.5

Keywords:

 Tumor growth, endoplasmic reticulum stress, inhibition of IRE-1a/ERN1, U87 glioma cells, angiogenesis, apoptosis, cell cycle, tumor suppressors.

Abstract

Activation of cell proliferation and angiogenesis as well as the down-regulation of apoptosis are important for tumor growth through pathways of the unfolding protein response/endoplasmic reticulum stress, a fundamental phenomenon for secure protection of cells by maintaining the functional integrity of the endoplasmic reticulum. It is mediated by three sensor and signaling pathways: IRE-1a/ERN1 (inositol-requiring enzyme-1a/endoplasmic reticulum to nuclei 1), ATF6 (activating transcription factor 6), and PERK (double stranded RNA activated protein kinase (PKR)-like endoplasmic reticulum kinase (PERK). All three arms of the unfolded protein response are important for tumor cell survival and growth especially under hypoxic conditions, but the unfolded protein response signaling is mainly mediated through the ERN1 pathway.The inhibition of ERN1 by its dominant-negative constructs leads to a decrease of tumor growth through suppression of angiogenesis and cell proliferation as well as activation of apoptosis and tumor suppressors. Data concerning the molecular mechanisms of the effect a blockade of ERN1 signaling enzyme has on glioma growth is analyzed, including the expression of genes controlling angiogenesis, cell proliferation, cell cycle, and apoptosis. Moreover, the inhibition of ERN1 endoribonuclease only has more profound effect on the expression of most key regulatory genes as well as on cell proliferation than the blockade of both kinase and endonuclease activity of ERN1 in glioma cells. In conclusion, the inhibition ofERN1/IRE-1alpha coordinately regulated factors involved in tumor growth, lowering expression levels of pro-proliferative, pro-angiogenic and anti-apoptotic factors and enzymes and up-regulated the expression of anti-proliferative, anti-angiogenic and pro-apoptotic factors in a trend towards the level of these transcription factors in normal human astrocytes. These review attempts to summarize recent advances in the role of inhibition of ERN1 signalingby dominant/negative strategies in regulation of proliferation and apoptosis related genes and suppression of tumor growth, which will help to define the best therapeutic targets for the design of potent antitumor drug. 

References

Bravo R, Parra V, Gatica D, et al. Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration. Int Rev Cell Mol Biol 2013; 301: 215-90. http://dx.doi.org/10.1016/B978-0-12-407704-1.00005-1

Kaufman RJ, Back SH, Song B, Han J, Hassler J. The unfolded protein response is required to maintain the integrity of the endoplasmic reticulum prevent oxidative stress and preserve differentiation in beta-cells. Diabetes obesity & metabolism 2010; 12(Suppl 2): 99-107. http://dx.doi.org/10.1111/j.1463-1326.2010.01281.x

Schröder M. Endoplasmic reticulum stress responses. Cell Mol Life Sci 2008 65: 862-94. http://dx.doi.org/10.1007/s00018-007-7383-5

Moenner M, Pluquet O, Bouchecareilh M, Chevet E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res 2007; 67: 10631-4. http://dx.doi.org/10.1158/0008-5472.CAN-07-1705

Wang S, Kaufman RJ. The impact of the unfolded protein response on human disease. J Cell Biol 2012; 197: 857-67. http://dx.doi.org/10.1083/jcb.201110131

Chakrabarti A1, Chen AW, Varner JD. A review of the mammalian unfolded protein response. Biotechnol Bioeng 2011; 108(12): 2777-93. http://dx.doi.org/10.1002/bit.23282

Wu J, Kaufman RJ. From acute ER stress to physiological roles of the Unfolded Protein Response. Cell Death Differ 2006; 13(3): 374-84. http://dx.doi.org/10.1038/sj.cdd.4401840

Woehlbier U, Hetz C. Modulating stress responses by the UPRosome: a matter of life and death. Trends Biochem Sci 2011; 36(6): 329-37. http://dx.doi.org/10.1016/j.tibs.2011.03.001

Lee SK, Kim YS. Phosphorylation of eIF2α attenuates statin-induced apoptosis by inhibiting the stabilization and translocation of p53 to the mitochondria. Int J Oncol 2013; 42(3): 810-6.

Marciniak SJ, Ron D. Endoplasmic reticulum stress signaling in disease. Physiol Rev 2006; 86(4): 1133-49. http://dx.doi.org/10.1152/physrev.00015.2006

Auf G, Jabouille A, Delugin M, et al. High epiregulin expression in human U87 glioma cells relies on IRE1alpha and promotes autocrine growth through EGF receptor. BMC Cancer 2013; 13: 597. http://dx.doi.org/10.1186/1471-2407-13-597

Yuzefovych LV, Musiyenko SI, Wilson GL, Rachek LI. Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PLoS One 2013; 8(1): e54059. http://dx.doi.org/10.1371/journal.pone.0054059

Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2000; 2(6): 326-32. http://dx.doi.org/10.1038/35014014

Backer MV, Backer JM, Chinnaiyan P. Targeting the unfolded protein response in cancer therapy. Methods Enzymol 2011; 491: 37-56. http://dx.doi.org/10.1016/B978-0-12-385928-0.00003-1

Schröder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem 2005; 74: 739-89. http://dx.doi.org/10.1146/annurev.biochem.73.011303.074134

Shen X, Zhang K, Kaufman RJ. The unfolded protein response--a stress signaling pathway of the endoplasmic reticulum. J Chem Neuroanat 2004; 28(1-2): 79-92. http://dx.doi.org/10.1016/j.jchemneu.2004.02.006

Korennykh AV, Egea PF, Korostelev AA, et al. The unfolded protein response signals through high-order assembly of Ire1. Nature 2009; 457(7230): 687-93. http://dx.doi.org/10.1038/nature07661

Acosta-Alvear D, Zhou Y, Blais A, et al. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Molecular Cell 2007; 27: 53-66. http://dx.doi.org/10.1016/j.molcel.2007.06.011

Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007l; 8(7): 519-29. http://dx.doi.org/10.1038/nrm2199

Lee J, Sun C, Zhou Y, et al. p38 MAPK-mediated regulation of Xbp1s is crucial for glucose homeostasis. Nat Med 2011; 17(10): 1251-60. http://dx.doi.org/10.1038/nm.2449

Park SW, Zhou Y, Lee J, Lu A, Sun C, Chung J, Ueki K, Ozcan U. The regulatory subunits of PI3K, p85alpha and p85beta, interact with XBP-1 and increase its nuclear translocation. Nat Med 2010; 16(4): 429-37. http://dx.doi.org/10.1038/nm.2099

Zhou Y, Lee J, Reno CM, et al. Regulation of glucose homeostasis through a XBP-1-FoxO1 interaction. Nat Med 2011; 17(3): 356-65. http://dx.doi.org/10.1038/nm.2293

Hollien J, Lin JH, Li H, et al. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol 2009; 186: 323-31. http://dx.doi.org/10.1083/jcb.200903014

Aragón T, van Anken E, Pincus D, et al. Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature 2009; 457: 736–40. http://dx.doi.org/10.1038/nature07641

Pluquet O, Dejeans N, Bouchecareilh M, et al. Posttranscriptional regulation of PER1 underlies the oncogenic function of IREα. Cancer Res 2013; 73: 4732–43. http://dx.doi.org/10.1158/0008-5472.CAN-12-3989

Oikawa D, Tokuda M, Iwawaki T. Site-specific cleavage of CD59 mRNA by endoplasmic reticulum-localized ribonuclease, IRE1. Biochem Biophys Res Commun 2007; 360(1): 122-7. http://dx.doi.org/10.1016/j.bbrc.2007.06.020

Han D, Upton JP, Hagen A, Callahan J, Oakes SA, Papa FR. A kinase inhibitor activates the IRE1alpha RNase to confer cytoprotection against ER stress. Biochem Biophys Res Commun 2008; 365(4): 777-83. http://dx.doi.org/10.1016/j.bbrc.2007.11.040

Han D, Lerner AG, VandeWalle L, et al. IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 2009; 138(3): 562-75. http://dx.doi.org/10.1016/j.cell.2009.07.017

Backer MV, Backer JM, Chinnaiyan P. Targeting the unfolded protein response in cancer therapy. Methods Enzymol 2011; 491: 37-56. http://dx.doi.org/10.1016/B978-0-12-385928-0.00003-1

Lee AS. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res 2007; 67(8): 3496-9. http://dx.doi.org/10.1158/0008-5472.CAN-07-0325

Bouchecareilh M, Higa A, Fribourg S, Moenner M, Chevet E. Peptides derived from the bifunctional kinase/RNase enzyme IRE1α modulate IRE1α activity and protect cells from endoplasmic reticulum stress. FASEB J 2011; 25(9): 3115-29. http://dx.doi.org/10.1096/fj.11-182931

Nguyen DT, Kebache S, Fazel A, et al. Nck-dependent activation of extracellular signal-regulated kinase-1 andregulation of cell survival during endoplasmic reticulumstress. Mol Biol Cell 2004; 15: 4248-60. http://dx.doi.org/10.1091/mbc.E03-11-0851

Drogat B, Auguste P, Nguyen DT, et al. IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Res 2007; 67: 6700-7. http://dx.doi.org/10.1158/0008-5472.CAN-06-3235

Auf G, Jabouille A, Guerit S, et al. Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci USA 2010; 107: 15553–8. http://dx.doi.org/10.1073/pnas.0914072107

Minchenko DО, Kubajchuk KІ, Ratushna OO, Komisarenko SV, Minchenko OH. The effect of hypoxia and ischemic conditionon the expression of VEGF genes in glioma U87 cells is dependent from ERN1 knockdown. Adv Biol Chem 2012; 2: 198-206.

Pereira ER, Liao N, Neale GA, Hendershot LM. Transcriptional and post-transcriptional regulation of proangiogenic factors by the unfolded protein response. PLoS One 2010; 5(9): e12521. http://dx.doi.org/10.1371/journal.pone.0012521

Zhang K, Kaufman RJ. The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology 2006; 66 (Suppl 1): S102-9. http://dx.doi.org/10.1212/01.wnl.0000192306.98198.ec

Kubaichuk KI, Minchenko DO, Danilovskyi SV, Kuznetsova AY, Jasim AR, Minchenko OH. Hypoxic regulation of the expression of anti-angiogenic genes in U87 glioma cells with ERN1 signaling enzyme loss of function. Studia Biologica 2012; 6(3): 15-28.

Hose D, Moreaux J, Meissner T, et al. Induction of angiogenesis by normal and malignant plasma cells. Blood. 2009; 114(1): 128-43. http://dx.doi.org/10.1182/blood-2008-10-184226

Shen J, Xia W, Khotskaya YB, et al. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature 2013; 497(7449): 383-7. http://dx.doi.org/10.1038/nature12080

Thorpe JA1, Schwarze SR. IRE1alpha controls cyclin A1 expression and promotes cell proliferation through XBP-1. Cell Stress Chaperones 2010; 15(5): 497-508. http://dx.doi.org/10.1007/s12192-009-0163-4

Minchenko D, Hubenya O, Terletsky B, Kuznetsova A, Moenner M, Minchenko O. Blockade of the endoplasmic reticulum stress sensor inositol requiring enzyme-1 changes the expression of cyclin and growth arrest-specific genes in glioma cells. Annales Universitatis Mariae Curie-Sklodowska. 2010; 23(3): 179-84.

Minchenko DO, Hubenya OV, Terletsky BM, Moenner M, Minchenko OH. Effect of hypoxia, glutamine and glucosede privation on the expression of cyclin and cyclin-dependent kinase genes in glioma cell line U87 and its subline with suppressed activity of signaling enzyme endoplasmic reticulum-nuclei-1. Ukr Biokhim Zh 2011; 83(1): 18-29.

Bakalets Т, Minchenko D, Danilovskyi S, Minchenko O. Expression of genes of the protein kinase PLK family in U87 gliomacells with suppressed function of endoplasmic reticulum stress signaling enzyme ERN1. Visnyk Taras Shevchenko Kyiv National Univ. Biology 2013; 63: 7-13.

Minchenko DO, Kharkova AP, Hubenia OV, Minchenko OH. Insulin receptor, IRS1, IRS2, INSIG1, INSIG2, RRAD, and BAIAP2 gene expression singlioma U87 cells with ERN1 loss of function: effect of hypoxia and glutamineorglucosede privation. Endocrine Regulations 2013; 47: 15-26. http://dx.doi.org/10.4149/endo_2013_01_15

Minchenko DO, Karbovskyi LL, Danilovskyi SV, Moenner M, Minchenko OH. Effect of hypoxia and glutamine or glucose deprivation on the expression of retinoblastoma and retinoblastoma-related genes in ERN1 knockdown glioma U87 cell line. Am J MolBiol 2012; 2: 21-31.

Karbovskyi LL, Minchenko DO, Danylovskyi SV, Moenner M, Minchenko OH. Endoplasmic reticulum–nuclei signaling enzyme-1 knockdown modulates effect of hypoxia and ischemia on the expression of circadian genes in glioma cells. Studia Biologica 2011; 5(2): 37-50.

Minchenko DO, Karbovskyi LL, Danilovskyi SV, Kharkova AP, Minchenko OH. Expression of casein kinase genesingliomacellline U87: effect of hypoxia and glucoseorglutamined eprivation. Nat Sci 2012; 4: 38-46.

Aggarwal P, Vaites LP, Kim JK, et al. Nuclear cyclin D1/CDK4 kinase regulates CUL4 expression and triggers neoplastic growth via activation of the PRMT5 methyltransferase. Cancer Cell 2010; 18(4): 329-40. http://dx.doi.org/10.1016/j.ccr.2010.08.012

Francescangeli F, Patrizii M, Signore M, et al. Proliferation state and polo-like kinase1 dependence of tumorigenic colon cancer cells. Stem Cells 2012; 30: 1819-1830.

Harris PS, Venkataraman S, Alimova I, Birks DK, Donson AM, Knipstein J, Dubuc A, Taylor MD, Handler MH, Foreman NK, Vibhakar R. Polo-like kinase 1 (PLK1) inhibition suppresses cell growth and enhances radiation sensitivity in medulloblastoma cells. BMC Cancer 2012; 12: 80.

Danilovskyi SV, Minchenko DO, Karbovskyi LL, Moliavko OS, Kovalevska OV, Minchenko OH. ERN1 knockdown modifies the hypoxicregulation of TP53, MDM2, USP7 and PERP gene expressions in U87 gliomacells. Ukr Biochem J 2014; 86(4): 90-102.

Minchenko DO, Danilovskyi SV, Kryvdiuk IV, Bakalets TV, Lypova NM, Karbovskyi LL, Minchenko OH. Inhibition of ERN1 modifies the hypoxicregulation of the expression of TP53-related genesin U87 gliomacells. Endoplasmic Reticulum Stressin Diseases 2014; 1: 18-26.

Malhotra JD, Kaufman RJ. ER stress and its functional link to mitochondria: role in cell survival and death. Cold Spring Harb Perspect Biol 2011; 3: a004424. http://dx.doi.org/10.1101/cshperspect.a004424

Joerger AC, Fersht AR. Structural biology of the tumor suppressor p53. Annu Rev Biochem 2008; 77: 557-82. http://dx.doi.org/10.1146/annurev.biochem.77.060806.091238

Kruse JP, Gu W. Modes of p53 regulation. Cell 2009; 137: 609-22. http://dx.doi.org/10.1016/j.cell.2009.04.050

Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP. Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer 2009; 9: 862-73. http://dx.doi.org/10.1038/nrc2763

McKenzie L, King S, Marcar L, et al. p53-dependent repression of polo-like kinase-1 (PLK1). Cell Cycle 2010; 9: 4200-12. http://dx.doi.org/10.4161/cc.9.20.13532

Nicholson B, Suresh Kumar KG. The multifaceted roles of USP7: new therapeutic opportunities. Cell Biochem Biophys 2011; 60: 61–8. http://dx.doi.org/10.1007/s12013-011-9185-5

Chen D, Zhang J, Li M, Rayburn ER, Wang H, Zhang R. RYBP stabilizes p53 by modulating MDM2. EMBO Rep 2009; 10: 166-72. http://dx.doi.org/10.1038/embor.2008.231

Novak RL, Phillips AC. Adenoviral-mediated Rybp expression promotes tumor cell-specific apoptosis. Cancer Gene Ther 2008; 15: 713-22. http://dx.doi.org/10.1038/cgt.2008.25

Hong S, Li X, Zhao Y, Yang Q, Kong B. TP53BP1 suppresses tumor growth and promotes susceptibility to apoptosis of ovarian cancer cells through modulation of the Akt pathway. Oncol Rep 2012; 27: 1251-7.

Li X, Xu B, Moran MS, et al. 53BP1 functions as a tumor suppressor in breast cancer via the inhibition of NF-κB through miR-146a. Carcinogenesis 2012; 33: 2593-600. http://dx.doi.org/10.1093/carcin/bgs298

Downloads

Published

2015-08-03

Issue

Section

Articles