Recent Updates on Small Molecule Inhibitors of Bromo and Extra C-Terminal Domain (BET) Family of Bromodomains
DOI:
https://doi.org/10.12970/2308-8044.2015.03.01.3Keywords:
Inhibitors, Bromodomains and extra-terminal (BET) proteins, Benzodiazepines, Benzotriazepines, Tetrahydroquinoline, Dihydroquinazolinone.Abstract
The bromo and extra C-terminal domain (BET) family of bromodomains (BRDs) are involved in binding epigenetic marks on histone proteins, more specifically ɛ-N-acetylated lysine residues. Inhibition of these targets leads to profound effects in relevant models of disease. BET BRDs inhibitors reported to date include benzodiazepines, benzotriazepines, 3,5-dimethylisoxoazole, dihydroquinazolinone, tetrahydroquinoline, thiazol-2-one, 4-acylpyrroles, diazobenzene, naphthyridines, and benzimidazole scaffold/moiety in their structure. Some potent inhibitors of BRD4, one of the bromodomain members, bind to asparagine140 residue of the acetylated-lysine site of BETs through triazole or isoxazole moieties. Some BET BRDs inhibitors also act as kinase inhibitors. Small molecules BET BRDs inhibitors have potential as anti-inflammatory, antiviral, and anticancer agents. Actions to produce a contraceptive for male rely on targeting BET family by a potent and selective bromodomain inhibitor. Several inhibitors targeting BRD4 are in preclinical/clinical trials as anticancer drugs.References
Arrowsmith ChH, Bountra Ch, Fish PV, Lee K, Schapira M. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 2012; 11: 384-400. http://dx.doi.org/10.1038/nrd3674
Fierz B, Muir TW. Chromatin as an expansive canvas for chemical biology. Nat Chem Biol 2012; 8: 417-427. http://dx.doi.org/10.1038/nchembio.938
Rius M, Lyko F. Epigenetic cancer therapy: rationales, targets and drugs. Oncogene 2012; 31: 4257-4265. http://dx.doi.org/10.1038/onc.2011.601
Filippakopoulos P, Knapp S. The bromodomain interaction module. FEBS Let 2012; 586: 2692-2704. http://dx.doi.org/10.1016/j.febslet.2012.04.045
Chung C. Small molecule bromodomain inhibitors: Extending the druggable domain. In: G. Lawton, D. R. Witty (eds.). Progress in Medicinal Chemistry, Volume 51, Elsevier, 2012. pp 1-56.
Josling GA, Selvarajah SA, Petter M, Duffy MF. The role of bromodomain proteins in regulating gene expression. Genes 2012; 3: 320-343. http://dx.doi.org/10.3390/genes3020320
Chung CW, Coste H, White JH, et al. Discovery and characterization of small molecule inhibitors of the BET family bromodomains. J Med Chem 2011; 54: 3827-3838. http://dx.doi.org/10.1021/jm200108t
Puissant P, Frumm SM, Alexe G, et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov 2013; 3: 308-323. http://dx.doi.org/10.1158/2159-8290.CD-12-0418
Filippakopoulos P, Picaud S, Fedorov O, et al. Benzodiazepines and benzotriazepines as protein interaction inhibitors targeting bromodomains of the BET family. Bioorg Med Chem 2012; 20: 1878-1886. http://dx.doi.org/10.1016/j.bmc.2011.10.080
Morinière J, Rousseaux S, Steuerwald U, et al. Cooperative binding of two acetylation marks on a histone tail by a single bromodomain. Nature 2009; 461: 664-668. http://dx.doi.org/10.1038/nature08397
Matzuk MM, McKeown MR, Filippakopoulos P, et al. Small-molecule inhibition of BRDT for male contraception. Cell 2012; 150: 673-684. http://dx.doi.org/10.1016/j.cell.2012.06.045
Filippakopoulos P, Picaud S, Mangos M, et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 2012; 149: 214-231. http://dx.doi.org/10.1016/j.cell.2012.02.013
Devaiah BN, Singer DS. Two faces of BRD4: Mitotic bookmark and transcriptional lynchpin. Transcription 2013; 4(1): 13-17. http://dx.doi.org/10.4161/trns.22542
Denis GV. Bromomdomaincoactivators in cancer, obesity, type 2 diabetes, and inflammation. Discov Med 2010; 10: 489-499.
Muller S, Filippakopoulos P, Knapp S. Bromodomains as therapeutic targets. Expert Rev Mol Med 2011; 13: e29. http://dx.doi.org/10.1017/S1462399411001992
Papavassiliou KA, Papavassiliou AG. Bromodomains: pockets with therapeutic potential. Trends Mol Med 2014; 20(9): 477-478. http://dx.doi.org/10.1016/j.molmed.2014.06.004
Filippakopoulos P, Qi J, Picaud S, et al. Selective inhibition of BET bromodomains. Nature 2010; 468 (7327): 1067-1073. http://dx.doi.org/10.1038/nature09504
Nicodeme E, Jeffrey KL, Schaefer U, et al. Suppression of inflammation by a synthetic histone mimic. Nature 2010; 468(7327): 1119-1123. http://dx.doi.org/10.1038/nature09589
Brand M, Measures AM, Wilson BG, et al. Small molecule inhibitors of bromodomain-acetyl-lysine interactions. ACS Chem Biol 2015; 10(1): 22-39. http://dx.doi.org/10.1021/cb500996u
Mertz JA, Conery AR, Bryant BM, et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. PNAS 2011; 108(40): 16669-16674. http://dx.doi.org/10.1073/pnas.1108190108
Tansey WP. Mammalian MYC proteins and cancer. New J Sci 2014; 2014: Article ID 757534.
Adler EM 2011: Signaling breakthroughs of the year. Sci Signal 2012; 5(205): eg1. http://dx.doi.org/10.1126/scisignal.2002787
Wyce A, Degenhardt Y, Bai Y, et al. Inhibition of BET bromodomain proteins as a therapeutic approach in prostate cancer. [Abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014; 74(19 Suppl): Abstract No 382.
Garnier JM, Sharp PP, Burns CJ. BET bromodomain inhibitors: a patent review. Expert Opin Ther Pat 2014; 24(2): 185-199. http://dx.doi.org/10.1517/13543776.2014.859244
Müller S, Knapp S. Discovery of BET bromodomain inhibitors and their role in target validation. Med Chem Commun 2014; 5: 288-296. http://dx.doi.org/10.1039/c3md00291h
Shi J, Vakoc CR. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Molecular Cell 2014; 54(5): 728-736. http://dx.doi.org/10.1016/j.molcel.2014.05.016
Philpott M, Rogers CM, Yapp C, et al. Assessing cellular efficacy of bromodomain inhibitors using fluorescence recovery after photobleaching. Epigenetics & Chromatin 2014; 7: 14. http://dx.doi.org/10.1186/1756-8935-7-14
Hewings DS, Wang M, Philpott M, et al. 3,5-Dimethylisoxazoles act as acetyl-lysine-mimetic bromodomain ligands. J Med Chem 2011; 54(19): 6761-6770. http://dx.doi.org/10.1021/jm200640v
Dawson MA, Prinjha RK, Dittmann A, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 2011; 478: 529-533. http://dx.doi.org/10.1038/nature10509
Bamborough P, Diallo H, Goodacre JD, et al. Fragment-based discovery of bromodomain inhibitors Part 2: Optimization of phenylisoxazole sulfonamides. J Med Chem 2011; 55 (2): 587-596. http://dx.doi.org/10.1021/jm201283q
Hay D, Fedorov O, Filippakopoulos P, et al. The design and synthesis of 5-and 6-isoxazolylbenzimidazoles as selective inhibitors of the BET bromodomains. Med Chem Comm 2013; 4: 140-144. http://dx.doi.org/10.1039/C2MD20189E
Hewings DS, Fedorov O, Filippakopoulos P, et al. Optimization of 3,5-dimethylisoxazole derivatives as potent bromodomain ligands. J Med Chem 2013; 56(8): 3217-3227. http://dx.doi.org/10.1021/jm301588r
Albrecht BK, Audia JE, Cote A, et al. Preparation of compounds containing azepine-based ring systems as bromodomain-containing protein inhibitors and therapeutic uses thereof. WO2012075383A2, 2012.
Picaud S, Da Costa D, Thanasopoulou A, et al. PFI-1, a highly selective protein interaction inhibitor, targeting BET bromodomains. Cancer Res 2013; 73(11): 3336-3346. http://dx.doi.org/10.1158/0008-5472.CAN-12-3292
Hewings DS, Rooney TPC, Jennings LE, et al. Progress in the development and application of small molecule inhibitors of bromodomain-acetyl-lysine interactions. J Med Chem 2012; 55(22): 9393-9413. http://dx.doi.org/10.1021/jm300915b
Fedorov O, Lingard H, Wells C, et al. [1,2,4]Triazolo[4,3-a]phthalazines: Inhibitors of diverse bromodomains. J Med Chem 2014; 57(2): 462-476. http://dx.doi.org/10.1021/jm401568s
Müller S, Knapp S. Discovery of BET bromodomain inhibitors and their role in target validation. Med Chem Commun 2014; 5: 288-296. http://dx.doi.org/10.1039/c3md00291h
Gallenkamp D, Gelato KA, Haendler B, Weinmann H. Bromodomains and their pharmacological inhibitors. Chem Med Chem 2014; 9: 438-464. http://dx.doi.org/10.1002/cmdc.201300434
Shi J. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Molecular Cell 2014; 54(5): 728-736. http://dx.doi.org/10.1016/j.molcel.2014.05.016
Delmore JE, Issa GC, Lemieux ME, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146: 904-917. http://dx.doi.org/10.1016/j.cell.2011.08.017
Mirguet O, Gosmini R, Toum J, et al. Discovery of epigenetic regulator I-BET762: lead optimization to afford a clinical candidate inhibitor of the BET bromodomains. J Med Chem 2013; 56(19): 7501-7515. http://dx.doi.org/10.1021/jm401088k
Nicodeme E, Jeffrey KL, Schaefer U, et al. Suppression of inflammation by a synthetic histone mimic. Nature 2010; 468(7327): 1119-1123. http://dx.doi.org/10.1038/nature09589
Zhao Y, Yang CY, Wang S. The Making of I-BET762, a BET bromodomain inhibitor now in clinical development. J Med Chem 2013; 56(19): 7498-7500. http://dx.doi.org/10.1021/jm4014407
Chaidos A, Caputo V, Gouvedenou K, et al. Potent antimyeloma activity of the novel bromodomain inhibitors I-BET151 and I-BET762. Blood 2014; 123(5): 697-705. http://dx.doi.org/10.1182/blood-2013-01-478420
Wang M, Chen C, Xu J, et al. Effect of bromdomain protein 4 inhibitor GSK525762A on the proliferation and apoptosis of B-cell acute lymphoblastic leukemia cells and its mechanism. Zhonghua Xue Ye Xue Za Zhi 2014; 35(6): 528-32.
Zhao Y, Yang CY, Wang S. The making of I-BET762, a BET bromodomain inhibitor now in clinical development. J Med Chem 2013; 56(19): 7498-7500. http://dx.doi.org/10.1021/jm4014407
Mirguet O, Lamotte Y, Donche F, et al. From ApoA1 upregulation to BET family bromodomain inhibition: Discovery of I-BET151. Bioorg Med Chem Lett 2012; 22(8): 2963-2967. http://dx.doi.org/10.1016/j.bmcl.2012.01.125
Zuber J, Shi J, Wang E, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011; 478: 524-528. http://dx.doi.org/10.1038/nature10334
Wu SY, Lee AY, Lai HT, Zhang H, Chiang CM. Phospho switch triggers Brd4 chromatin binding and activator recruitment for gene-specific targeting. Mol Cell 2013; 49(5): 843-857. http://dx.doi.org/10.1016/j.molcel.2012.12.006
Banerjee C, Archin N, Michaels D, et al. BET bromodomain inhibition as a novel strategy for reactivation of HIV-1. J Leukocyte Biol 2012; 92(6): 1147-1154. http://dx.doi.org/10.1189/jlb.0312165
Matthias G. J. Baud MGJ, Enrique Lin-Shiao E, Teresa Cardote T, et al. A bump-and-hole approach to engineer controlled selectivity of BET bromodomain chemical probes. Science 2014; 346(6209): 638-641. http://dx.doi.org/10.1126/science.1249830
Baud MG, Lin-Shiao E, Cardote T et al. Chemical biology. A bump-and-hole approach to engineer controlled selectivity of BET bromodomain chemical probes. Science 2014; 346 (6209): 638-641. http://dx.doi.org/10.1126/science.1249830
Gamsjaeger R, Webb SR, Lamonica JM, et al. Structural basis and specificity of acetylated transcription factor GATA1 recognition by BET family bromodomain protein Brd3. Mol Cell Biol 2011; 31(13): 2632-2640. http://dx.doi.org/10.1128/MCB.05413-11
Floyd SR, Pacold ME, Huang Q, et al. The bromodomain protein Brd4 insulates chromatin from DNA damage signalling. Nature 2013; 498(7453): 246-250. http://dx.doi.org/10.1038/nature12147
Noel JK, Iwata K, Ooike S, Sugahara K, Nakamura H, Daibata M. Development of the BET bromodomain inhibitor OTX015. [Abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2013 Oct 19-23; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013; 12(11 Suppl): Abstract No C244.
Herait PE, Berthon C, Thieblemont C, et al. BET-bromodomain inhibitor OTX015 shows clinically meaningful activity at nontoxic doses: interim results of an ongoing phase I trial in hematologic malignancies. Presented at: 2014 AACR Annual Meeting; April 5-9, 2014; San Diego, CA. Abstract CT231.
Bernasconi E, Tarantelli C, Gaudio E, et al. The BET-bromodomain inhibitor OTX015 is active as a single agent and in combination with other targeted drugs in preclinical models of mantle cell lymphoma. Blood 2014; 1 24(21) :
Boi M, Todaro M, Vurchio V, et al. Abstract A219: OTX015, a bromodomain and extraterminal inhibitor, represents a novel agent for ALK positive anaplastic large cell lymphoma. [Abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2013 Oct 19-23; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013; 12(11 Suppl): Abstract No A219.
Zhang G, Liu R, Zhong Y, et al. Down-regulation of NF-κB transcriptional activity in HIV-associated kidney disease by BRD4 inhibition. J Biol Chem 2012; 287(34) : 28840-28851. http://dx.doi.org/10.1074/jbc.M112.359505
Boehm D, Dar VRD, Xing S, et al. BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism. Cell Cycle 2013; 2(3): 452-462. http://dx.doi.org/10.4161/cc.23309
King B, Trimarchi T, Reavie L, et al. The ubiquitin ligase Fbxw7 modulates leukemia-initiating cell activity by regulating Myc stability. Cell 2013; 153(7): 1552-1566. http://dx.doi.org/10.1016/j.cell.2013.05.041
Moros A, Rodríguez V, Saborit-Villarroya I, et al. Synergistic antitumor activity of lenalidomide with the BET bromodomain inhibitor CPI203 in bortezomib-resistant mantle cell lymphoma. Cancer Res 2014; 74: 1691.
Chung CW, Nicodeme E. Quinoline, azoloquinoline, triazolobenzodiazepine derivatives as bromodomain inhibitors for treating autoimmune and inflammatory diseases and their preparation. WO2011054843A1, 2011.
Albrecht BK, Harmange JC, Cote A, Taylor AM. Bromodomain inhibitors for cancer therapy. WO2012174487A2, 2012.
Wrobel M. Triazolobenzodiazepines and-triazepines as protein interaction inhibitors targeting bromodomains of the BET family. Dissertation, LMU München: Faculty of Chemistry and Pharmacy, 2014; http: //edoc.ub.uni-muenchen.de/16562/.
Chung CW, Dean AW, Woolven JM, Bamborough P. Fragment-based discovery of bromodomain inhibitors part 1: inhibitor binding modes and implications for lead discovery. J Med Chem 2012; 55: 576-586. http://dx.doi.org/10.1021/jm201320w
Seal J, Lamotte Y, Donche F, et al. Identification of a novel series of BET family bromodomain inhibitors: binding mode and profile of I-BET151 (GSK1210151A). Bioorg Med Chem Lett 2012; 22: 2968-2972. http://dx.doi.org/10.1016/j.bmcl.2012.02.041
Fish PV, Filippakopoulos P, Bish G, et al. Identification of a chemical probe for bromo and extra C-terminal bromodomain inhibition through optimization of a fragment-derived hit. J Med Chem 2012; 55(22): 9831-9837. http://dx.doi.org/10.1021/jm3010515
Picaud S, David Da Costa D, Angeliki Thanasopoulou A, et al. PFI-1, a highly selective protein interaction inhibitor, Targeting BET bromodomains. Cancer Res 2013; 73; 3336-3346. http://dx.doi.org/10.1158/0008-5472.CAN-12-3292
Gosmini R, Nguyen VL, Toum J, et al. The discovery of I-BET726 (GSK1324726A), a potent tetrahydroquinoline ApoA1 up-regulator and selective BET bromodomain inhibitor. J Med Chem 2014; 57(19): 8111-8131. http://dx.doi.org/10.1021/jm5010539
Dominique M, Hubert DE, Louise JK, Thomas SJ, Louise WA. Tetrahydroquinoline derivatives useful as bromodomain inhibitors, 20140066459, 06.03.2014.
Zhao L, Cao D, Chen T, et al. Fragment-based drug discovery of 2-thiazolidinones as inhibitors of the histone reader BRD4 bromodomain. J Med Chem 2013; 56(10): 3833-3851. http://dx.doi.org/10.1021/jm301793a
Zhao L, Wang Y, Cao D, et al. Fragment-based drug discovery of 2-thiazolidinones as BRD4 inhibitors: 2. Structure-based optimization. J Med Chem Article ASAP Publication Date (Web): January 5, 2015. http://dx.doi.org/10.1021/jm501504k
Zhao H, Gartenmann L, Dong J, Spiliotopoulos D, Caflisch A. Discovery of BRD4 bromodomain inhibitors by fragment-based high-throughput docking. Bioorg Med Chem Lett 2014; 24(11); 2493-2496. http://dx.doi.org/10.1016/j.bmcl.2014.04.017
XD46-a potent fragment against novel anticancer targets. Patent Status: EP 131 13164209, Prority date17th April 2013, and EP 14153141.8, Proiority date 29th 2014.
Lucas X, Wohlwend D, Hugle M, et al. 4-Acyl pyrroles: mimicking acetylated lysines in histone code reading. Angew Chem Int Ed Engl 2013; 52: 14055-14059. http://dx.doi.org/10.1002/anie.201307652
Zhang G, Plotnikov AN, Rusinova E, et al. Structure-guided design of potent diazobenzene inhibitors for the BET bromodomains. J Med Chem 2013; 56(22): 9251-9264. http://dx.doi.org/10.1021/jm401334s
Mirguet O, Lamotte Y, Chung CW, et al. Naphthyridines as novel BET family bromodomain inhibitors. Chem Med 2014; 9(3): 580-589.
Vidler LR, Filippakopoulos P, Fedorov O, et al. Discovery of novel small-molecule inhibitors of BRD4 using structure-based virtual screening. J Med Chem 2013; 56: 8073−8088. http://dx.doi.org/10.1021/jm4011302
Atoudianakis E, Chin G, Corkey BK, et al. Benzimidazole derivatives as bromodomain inhibitors, WO2014182929, 13.11.2014.
Gehling VS, Hewitt MC, Vaswani RG, et al. Discovery, design, and optimization of isoxazole azepine BET inhibitors. ACS Med Chem Lett 2013; 4(9): 835-840. http://dx.doi.org/10.1021/ml4001485
Filippakopoulos P, Knapp S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat Rev Drug Discov 2014; 13: 337-356. http://dx.doi.org/10.1038/nrd4286
McLure KG, Jahagirdar R, Kharenko OA, et al. 560 ZEN3365 is a novel BET bromodomain inhibitor for the treatment of hematologic malignancies and solid tumors. Europeon J Cancer 2014; 50(6): 181. http://dx.doi.org/10.1016/S0959-8049(14)70686-0
Stephen J. Atkinson SJ, Peter E. Soden PE, Davina C. Angell DC, et al. The structure based design of dual HDAC/BET inhibitors as novel epigenetic probes. Med Chem Comm 2014; 5: 342-351. http://dx.doi.org/10.1039/c3md00285c
Martin MP, Olesen SH, Georg GI, Schonbrunn E. Cyclin-dependent kinase inhibitor dinaciclib interacts with the acetyl-lysine recognition site of bromodomains. ACS Chem Biol 2013; 8: 2360-2365. http://dx.doi.org/10.1021/cb4003283
Ember SWJ, Zhu JY, Olesen SH, Acetyl-lysine binding site of bromodomain-containing protein 4 (BRD4) interacts with diverse kinase inhibitors. ACS Chem Biol 2014; 9(5): 1160-1171. http://dx.doi.org/10.1021/cb500072z
Pietro Ciceri P, Susanne Müller S Alison O’Mahony A, et al. Dual kinase-bromodomain inhibitors for rationally designed polypharmacology. Nat Chem Biol 2014; 10(4): 305-312. http://dx.doi.org/10.1038/nchembio.1471
Ott CJ, Kopp N, Bird L, et al. BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood 2012; 120: 2843-2852. http://dx.doi.org/10.1182/blood-2012-02-413021