Medicinal Chemistry of Brazil Nuts: An Overview 

Authors

  • Carlos K.B. Ferrari Instituto de Ciências Biológicas e da Saúde (ICBS), Campus Universitário do Araguaia, Universidade Federal de Mato Grosso (UFMT), Brazil

DOI:

https://doi.org/10.12970/2308-8044.2018.06.02

Keywords:

 Cardiovascular, selenium, vitamin E, phytosterols, arginine.

Abstract

Brazil nuts are very consumed in the North of Brazil as well in other regions. Those nuts are rich in mono and polyunsaturated fatty acids, as well as essential and non-essential aminoacid residues, selenium, tocopherols and phytosterols. Although some studies pointed out some protective effect of Brazil nuts against cancer, in fact the best evidence supports cardiometabolic protection by regular ingestion of 1 nut per day. 

References

Yang J. Brazil nuts and associated health benefits: A review. LWT Food SciTechnol 2009; 42: 1573-1580. https://doi.org/10.1016/j.lwt.2009.05.019

Silva Jr EC, Wadt LHO, Silva KE, Lima RMB, Batista KD, Guedes MC, Carvalho GS, Carvalho TS, Reis AR, Lopes G. Natural variation of selenium in Brazil nuts and soils from the Amazon region. Chemosphere 2017; 188: 650-658. https://doi.org/10.1016/j.chemosphere.2017.08.158

Chatterjee MK. The food value of the nut of Anacardiumoccidentale (HijliBadam).Ind Med Gaz 1930; Jan: 12-15.

AMA.American Medical Association.Dietary fiber and health.AMA council on Scientific Affairs. Conn Med 1989; 53(9): 529-34.

Fraser GE, Sabaté J, Beeson L, Strahan TM. A possible protective effect of nut consumption on risk of coronary heart disease.The Adventist Health Study. Arch Int Med 1992; 152: 1416-1424. https://doi.org/10.1001/archinte.1992.00400190054010

Hu FB, Stampfer MJ, Manson JE, Rimm EB, Colditz GA, Rosner BA, Speizer FE, Hennekens CH, Willett WC. Frequent nut consumption and risk of coronary heart disease in women: prospective cohort study. BMJ 1998; 317: 1341-5. https://doi.org/10.1136/bmj.317.7169.1341

Shao C, Tang H, Zhao W, He J. Nut intake and stroke risk: A dose-response meta-analysis of prospective cohort studies. Sci Rep 2016; 6: 30394. https://doi.org/10.1038/srep30394

Chen GC, Zhang R, Martínez-González MA, Zhang Z-L, Bonaccio ML, van Dam RM, Qin L-Q. Nut consumption in relation to all-cause and cause-specific mortality: a metaanalysis of 18 prospective studies. Food Funct 2017; 8: 3893-3905. https://doi.org/10.1039/C7FO00915A

Wadi JML, Ferrari CKB. Knowledge and intake of functional foods by primary health care professionals from a Legal Amazon region, Brazil. RevBrasObesNutrEmagrec 2017; 11(65): 313-321.

Fernandes IM, Chagas EA, Mello Filho AA de, Maldonado SAS, Santos RC dos, Costa HNR da, Ribeiro PRE, Madrid MEH, Avilla OV, Melo ACGR de, Duarte EDRS. Composição mineralógica e nutricional da castanha do Brasil Bertholletia excelsa HB cultivada em São João da Baliza (Roraima). Gramado, RS: Anais do 57o Congresso Brasileiro de Química.

Freitas JB, Naves MMV. Composição química de nozes e sementes comestíveis e sua relação com a nutrição e a saúde. Revista de Nutrição 2010; 23(2): 269-279. https://doi.org/10.1590/S1415-52732010000200010

Zimmermann M. Micronutrients in health and disease.Georg ThiemeVerlag, Stuttgart, 2001.

Heys SD, Schofield AC,Wahle KW.Immunonutrition in clinical practice: what is the current evidence? NutrHosp 2004; 19: 325-332.

Morris Jr S. Arginine: beyond protein. Am J ClinNutr 83 (2): S508-S512. https://doi.org/10.1093/ajcn/83.2.508S

Costa T, Jorge N. Beneficial bioactive compounds present in nuts and walnuts. UnoparCientCiencBiolSaude 2011; 13(3): 195-203.

Alves AM, Fernandes DC, Borges JF, Sousa AG de O, Naves MMV. Oilseeds native to the Cerrado have fatty acid profile beneficial for cardiovascular health. Revista de Nutrição 2016; 29(6): 859-866. https://doi.org/10.1590/1678-98652016000600010

Rocha VZ, Ras RT, Gagliardi AC, Mangili LC, Trautwein EA, Santos RD. Effects of phytosterols on markers of inflammation: A systematic review and meta-analysis. Atherosclerosis 2016; 248: 76-83. https://doi.org/10.1016/j.atherosclerosis.2016.01.035

Moghadasian MH, Alsaif M, Le K, Gangadaran S, Masisi K, Beta T, Shen GX. Combination effects of wild rice and phytosterols on prevention of atherosclerosis in LDL receptor knockout mice. Heath Adv 2016; 33: 128-135. https://doi.org/10.1016/j.jnutbio.2016.03.015

Yi J, Knudsen TA, Nielsen A-L, Duelund L, Christensen M, Hervella P, Needham D, Mouritsen OG. Inhibition ofcholesterol transport in an intestine cell model by pinederived phytosterols.ChemPhys Lipid 2016; 200: 62-73. https://doi.org/10.1016/j.chemphyslip.2016.06.008

Fraser GE. Nut consumption, lipids, and risk of coronary event.ClinCardiol 1999; 22(7suppl.): 11-15. https://doi.org/10.1002/clc.4960221504

Valenzuela R, Sanhueza J, Valenzuela A. Docosohexaenoic acid (DHA), an important fatty acid in aging and the protection of neurodegenerative diseases. J NutrTher 2012; 1: 63-72.

Silva WJM da, Ferrari CKB. Mitochondrial metabolism, free radicals and aging.Revista Brasileira de Geriatria e Gerontologia 2011; 14(3): 441-451.

Ferrari CKB. Functional foods, nutraceuticals and herbs: an approach of cell and molecular anti-ageing mechanisms. Agro Food Ind High-Tech 2013; 24(2): 10-13.

Yang J, Liu RH, Halim L. Antioxidant and antiproliferative activities of common edible nut seeds. LWT Food SciTechnol 2009; 42: 1–8. https://doi.org/10.1016/j.lwt.2008.07.007

Duthie GG. Lipid peroxidation. Eur J ClinNutr 1993; 47: 759- 64.

Kovac JR. Vitamins and antioxidants in the management of male fertility. Ind J Urol 2017; 33: 215. https://doi.org/10.4103/iju.IJU_188_17

Motohashi N, Gallagher R, Anuradha V, Gollapudi R. Coenzyme Q10 (Ubiquinone): It’s implication in improving the life style of the elderly. Med Clin Rev 2017; 3(S1): 1-6.

Matthews RT, Yang L, Browne S, Baik M, Beal F. Coenzyme Q10 adminstration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci USA 1998; 95: 8892-7. https://doi.org/10.1073/pnas.95.15.8892

Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RAJ, Murphy MP. Selective targeting of a redox-active ubiquinone to mitochondria within cells. J Biol Chem 2001; 276: 4588-96. https://doi.org/10.1074/jbc.M009093200

Armeni T, Principato G, Quiles JL, Pieri C, Bompadre S,Battino M. Mitochondrial dysfunction during aging: vitamin E deficiency or caloric restriction-two different ways of modulating stress. J Bionerg Biomembr 2003; 35: 181-191. https://doi.org/10.1023/A:1023754305218

Brown, K.M., Morrice, P.C. and Duthie G.G. (1998) Erythrocyte membrane fatty acid composition of smokers and non-smokers: effects of vitamin E supplementation. Eur J Clin Nutr 52: 145-150. https://doi.org/10.1038/sj.ejcn.1600536

Rafique R, Shapira AH, Coper JM. Mitochondrial respiratory chain dysfunction in ageing; influence of vitamin E deficiency. Free Radic Res 2004; 38: 157-165. https://doi.org/10.1080/10715760310001643311

Behne D, Kyriakopoulos A. Mammalian selenium-containing proteins. Annu Rev Nutr 2001; 21: 453-473. https://doi.org/10.1146/annurev.nutr.21.1.453

Zhao X, Yao H, Fan R, Zhang Z, Xu S. Selenium deficiency influences nitric oxide and selenoproteins in pancreas of chickens. Biol Trace Elem Res 2014; 161(4): 341-9. https://doi.org/10.1007/s12011-014-0139-9

Huang JQ, Ren FZ, Jiang YY, Lei X. Characterization of Selenoprotein M and its response to Selenium deficiency in chicken brain. Biol Trace Elem Res 2016; 170(2): 449-458. https://doi.org/10.1007/s12011-015-0486-1

Burk RF, Hill KE. Glutathione Peroxidases, Comprehensive Toxicology, Second Edition, edited by Charlene A. McQueen, Elsevier, Oxford, 2010, Volume 4, Pages 229–242.

Yang J, Hamid S, Liu Q, Cai J, Xu S, Zhang Z. Gene expression of selenoproteins can be regulated by thioredoxin(Txn) silence in chicken cardiomyocytes. J Inorg Biochem 2017; 177: 118-126. https://doi.org/10.1016/j.jinorgbio.2017.08.027

Conrad M, Angeli JPF. Glutathioneperoxidases. Comprehensive Toxicology. Oxford, Elsevier 2018; 10: 260-276. https://doi.org/10.1016/B978-0-12-801238-3.95621-6

Levander OA. The selenium-coxsackievirus connection: chronicle of a collaboration. J Nutr 2000; 130: 485S-488S.

Tanguy S, Toufektsian M-C, Besse S, Ducros V, Leiris J de, Boucher F. (2003) Dietary selenium intake affects cardiac susceptibility to ischemia/reperfusion in male senescent rats. Age Ageing 2003; 32: 273-278. https://doi.org/10.1093/ageing/32.3.273

Schrauzer GN. Anticarcinogenic effects of selenium. Cel Mol Life Sci 2000; 57: 1864-1873. https://doi.org/10.1007/PL00000668

Blomhoff R, Carlsen MH, Andersen LF, Jacobs jr DR. Health benefits of nuts: potential role of antioxidants. Brit J Nutr 2006; 96(Suppl.2): S52-S60.

Ferrari CKB, Percário S, Silva JCCB, Torres EAFS. An apple plus a Brazil nut a day keeps the doctors away: Antioxidant Capacity of Foods and their Health Benefits. Cur Pharm Des 2016; 22: 189-195. https://doi.org/10.2174/1381612822666151117122715

Martens IBG, Cardoso BR, Hare DJ, Niedzwiecki MM, Lajolo FM, Martens A, Cozzolino SMF. Selenium status in preschool children receiving a Brazil nut-enriched diet. Nutrition 2015; 31: 1339-1343. https://doi.org/10.1016/j.nut.2015.05.005

Cominetti C, Bortoli MC de, Purgatto E, Ong TP, Moreno FS, Garrido Jr AB, Cozzolino SMF. Associations between glutathione peroxidase-1 Pro-198Leu polymorphism, selenium status and DNA damage levels in obese women after consumption of Brazil nuts. Nutrition 2011; 27: 891-896. https://doi.org/10.1016/j.nut.2010.09.003

Cardoso-B R, Apolinário D, Bandeira VS, Busse AL, Magaldi RM, Jacob-filho W, Cozzolino SM. Effects of Brazil nut consumption on selenium status and cognitive performance in older adults with mild cognitive impairment: a randomized controlled pilot trial. Eur J Nutr 2016; 55(1): 107-116. https://doi.org/10.1007/s00394-014-0829-2

Lu J, Chen B, Chen T, Guo S, Xue X, Chen Q, Zhao M, Xia L, Zhu Z, Zheng L, Yin H. Comprehensive metabolomics identified lipid peroxidation as a prominent feature in human plasma of patients with coronary heart diseases. Redox Biol 2017; 12: 899-907. https://doi.org/10.1016/j.redox.2017.04.032

Carvalho RF, Hughenin GVB, Luiz RR, Moreira ASB, Oliveira GMM, Rosa G. Intake of partially defatted Brazil nut flour reduces serum cholesterol in hypercholesterolemic patientsa randomized controlled trial. Nutr J 2015; 14: 59. https://doi.org/10.1186/s12937-015-0036-x

Fernandes DC, Alves AM, Castro GSF, Jordão Jr AA, Naves MMV. Effects of Baru almond and Brazil nut against hyperlipidemia and oxidative stress in vivo. J Food Res 2015; 4(4): 38-46. https://doi.org/10.5539/jfr.v4n4p38

Colpo E, Vilanova CDDA, Reetz LGB, Duarte MMMF, Farias ILG, Meinerz DF, Mariano DOC, Vendrusculo RG, Boligon AA, Corte CLD, Wagner R, Athayde ML, Rocha JBT da.Brazil nut consumption by healthy volunteers improves inflammatory parameters. Nutrition 2014; 30: 459-465. https://doi.org/10.1016/j.nut.2013.10.005

Stockler-Pinto MB, Mafra D, Moraes C, Lobo J, Boaventura GT, Farage NE, Silva WS, Cozzolino SF, Malm O. Brazil nut (Bertholletiaexcelsa, H.B.K.) improves oxidative stress and inflammation biomarkers in hemodialysis patients. Biol Trace Elem Res 2014; 158(1): 105-112. https://doi.org/10.1007/s12011-014-9904-z

Costa DA da, Álvares V de S, Nogueira RM, Kusdra JF, Maciel VT, Miqueloni DP. Quality of Brazil nuts stored in forced aeration silos. Rev Ceres 2016; 63(3): 305-314. https://doi.org/10.1590/0034-737X201663030005

Mazokopakis EE, Liontiris MI. Commentary: health concerns of Brazil nut consumption. J AlternComplem Med August 2017, ahead of print. https://doi.org/10.1089/acm.2017.0159

Downloads

Published

2018-05-18

Issue

Section

Articles