Current Aspects of Hepatic Lipotoxicity in Metabolic Associated Fatty Liver Disease

Authors

  • Cordova-Gallardo Jacqueline Department of Hepatology, Service of Surgery and Obesity Clinic, General Hospital “Dr. Manuel Gea González”, 14080 Mexico City, Mexico
  • Mohammed Eslam Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead 2145, NSW, Australia
  • Mendez-Sanchez Nahum Liver Research Unit, Medica Sur Clinic & Foundation, 14050 Mexico City, Mexico and Faculty of Medicine, National Autonomous University of Mexico

DOI:

https://doi.org/10.12970/2308-8044.2020.08.09

Keywords:

 Metabolic associated fatty liver disease, Metabolic steatohepatitis, Liver fibrosis, Adipose tissue, Hepatic Lipotoxicity.

Abstract

 Metabolic associated fatty liver disease (MAFLD) is an increasing health problem affecting 20 to 30% of the global population, due to its strong association with obesity and type 2 diabetes mellitus (T2DM). Metabolic steatohepatitis and its progression to cirrhosis is the second cause of chronic liver disease in the world. Hence, early identification of this inflammatory state and understanding of the pathogenesis, will help to focus and treat an early state of this disease. Several factors contribute to the inflammation of the liver and the development of steatohepatitis among them insulin resistance, oxidative stress, lipotoxicity and bile acid toxicity. Adipose tissue (AT) and lipotoxicity plays a key role in the development and persistence of inflammation in MAFLD, by the alterations of the balance of adipokines in an insulin resistant AT, the secretion and activation of pro-inflammatory pathways, the mitochondrial and endoplasmic reticulum dysfunction and the consequent oxidative stress, as well as the secretion of free oxygen reactive species. A good understanding of the hepatic lipotoxicity and the role of the AT will help us to work out for the development of new strategies for treating this disease. 

References

Eslam M, Sanyal AJ, George J. MAFLD: A consensus-driven proposed nomenclature for metabolic associ-ated fatty liver disease. Gastroenterology 2020; 158: 1999-2014. https://doi.org/10.1053/j.gastro.2019.11.312

Valencia-Rodríguez A, Vera-Barajas A, Chávez-Tapia NC, Uribe M, Méndez-Sánchez N. Looking into a new era for the approach of metabolic (dysfunction) associated fatty liver disease. Ann Hepatol 2020; 19: 227-29. https://doi.org/10.1016/j.aohep.2020.04.001

Fouad Y, Waked I, Bollipo S, Gomaa A, Ajlouni Y, Attia D. What’s in a name? Renaming “NAFLD” to “MAFLD”. Liver International 2020; 40: 1254-1261. https://doi.org/10.1111/liv.14478

Eslam M, Newsome PN, Sarin SK, Anstee QM, Targer G, Romero-Gomez M et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert con-sensus statement. J Hepatol 2020; 73: 202-09. https://doi.org/10.1016/j.jhep.2020.03.039

López-Velázquez JA, Silva-Vidal KV, Ponciano-Rodríguez G, Chavez-Tapia NC, Arrese M, Uibe M, Mendez-Sanchez, N. The prevalence of nonalcoholic fatty liver disease in the Americas. Ann Hepatol 2014; 31: 166-78. https://doi.org/10.1016/S1665-2681(19)30879-8

Shiha G, Korenjak M, Eskridge W, Casanovas T, VelezMoller P, Hogstrom S, et al. Redefining fatty liver disease: an international patient perspec-tive. Lancet Gastroenterol Hepatol 2020; S2468-1253(20): 30294-6. https://doi.org/10.1016/S2468-1253(20)30294-6

Eslam M, Sarin SK, Wong VW, Fan JG, Kawaguchi T, Ahn SH, et al. The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease. Hepatol Int 2020. https://doi.org/10.1007/s12072-020-10094-2

Eslam M, Fan JG, Mendez-Sánchez N. Non-alcoholic fatty liver disease in non-obese individuals: the impact of metabolic health. Lancet Gastroenterol Hepatol 2020; 5(8): 713-715. https://doi.org/10.1016/S2468-1253(20)30090-X

Méndez-Sánchez N, Zamarripa-Dorsey F, Panduro A, PurónGonzález E, Coronado-Alejandro EU, Cortez-Hernández CA, et al. Current trends of liver cirrhosis in Mexico: Similitudes and differences with other world regions. World J Clin Cases 2018; 6(15): 922-930. https://doi.org/10.12998/wjcc.v6.i15.922

Chavez-Tapia NC, Tellez-Avila FI, Barrientos-Gutiérrez T, Mendez-Sanchez N, Lizardi-Cervera J, Uribe M. Bariatric Surgery for non-alcoholic steatohepatitis in obese patients (Review). Cochrane Database Syst Rev 2010; 2010(1): CD007340. https://doi.org/10.1002/14651858.CD007340.pub2

Méndez-Sánchez N, Valencia-Rodríguez A. Caveats for the implementation of global strategies against non-alcoholic fatty liver disease. J Hepatol 2020; 73: 220. https://doi.org/10.1016/j.jhep.2020.02.013

Méndez-Sánchez N, Cerda-Reyes E, Higuera-de-la-Tijera F, Salas-García AK, Cabrera-Palma S, Cabrera-Alvarez G, et al. Dyslipidemia as a risk factor for liver fibrosis progression in a multicentric population with non-alcoholic steatohepatitis. F1000 Res 2020; 9: 1-12. https://doi.org/10.12688/f1000research.21918.1

Younossi Z, Anstee Q.M, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018; 15: 11-20. https://doi.org/10.1038/nrgastro.2017.109

Sheka AC, Adeyi O, Thompson J, Hameed B, Crawford P, Ikramuddin S. Nonalcoholic Steatohepatitis: A Review. JAMA 2020; 323(12): 1175-1183. https://doi.org/10.1001/jama.2020.2298

Younossi ZM. Non-alcoholic fatty liver disease - A global public health perspective. J Hepatol 2019; 70(3): 531-544. https://doi.org/10.1016/j.jhep.2018.10.033

Altamirano-Barrera A, Barranco-Fragoso B, MendezSánchez N. Management strategies for liver fibrosis. Ann Hepatol 2017; 16: 48-56. https://doi.org/10.5604/16652681.1226814

Mendez-Sanchez N, Cruz-Ramon VC, Ramirez-Perez OL, Hwang JP, Barranco-Fragoso B, Cordova-Gallardo J. New Aspects of Lipotoxicity in Nonalcoholic Steatohepatitis. Int J Mol Sci 2018; 19(7): 2034. https://doi.org/10.3390/ijms19072034

Rada P, González-Rodríguez Á, García-Monzón C, Valverde ÁM. Understandinglipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell Death Dis 2020; 11(9): 802. https://doi.org/10.1038/s41419-020-03003-w

Qin YE, Duan L, He Y, Yuan C, Wang T, Yuan D, Zhang C, Liu C. Saturated Fatty Acids Promote Hepatocytic Senescence through Negative Regulation of miR-34a/Cyclindependent Kinase 6. Mol Nutr Food Res 2020; e2000383. https://doi.org/10.1002/mnfr.202000383

Sarjeant K, Stephens JM. Adipogenesis. Cold Spring Harb Perspect Biol 2012; 4(9): a008417. https://doi.org/10.1101/cshperspect.a008417

Trujillo ME, Scherer PE. Adipose tissue-derived factors: Impact on health and disease. Endocr Rev 2006; 27: 762-778. https://doi.org/10.1210/er.2006-0033

Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology 2007; 132: 2169-2180. https://doi.org/10.1053/j.gastro.2007.03.059

Ambele MA, Sean Pepper M. Identification of transcription factors potentially involved in human adipogenesis in vitro Mol Genet Genomic Med 2017; 5(3): 210-222. https://doi.org/10.1002/mgg3.269

Gray SL, Vidal-Puig AJ. Adipose tissue expandability in the maintenance of metabolic homeostasis. Nutr Rev 2007; 65: S7-S12. https://doi.org/10.1111/j.1753-4887.2007.tb00331.x

Mota M, Banini BA, Cazanave SC, Sanyal AJ. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism 2016; 65: 1049-1061. https://doi.org/10.1016/j.metabol.2016.02.014

Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS. Regulation of lipolysis in adipocytes. Annu. Rev. Nutr 2007; 27: 79-101. https://doi.org/10.1146/annurev.nutr.27.061406.093734

Chatterjee A, Basu A, Das K, Singh P, Mondal D, Bhattacharya B, et al. Hepatic transcriptome signature correlated with HOMA-IR explains early nonalcoholic fatty liver disease pathogenesis. Ann Hepatol 2020; 19(5): 472- 481. https://doi.org/10.1016/j.aohep.2020.06.009

Karstoli S, Kostara CE, Tsimihodimos V, Bairaktari ET, Chistodoulou DK. Lipidomics in non-alcoholic fatty liver disease. World J of Hepatol 2020; 12(8): 436-450. https://doi.org/10.4254/wjh.v12.i8.436

Sunami Y. NASH, Fibrosis and Hepatocellular Carcinoma: Lipid Synthesis and Glutamine/Acetate Signaling. Int J Mol Sci 2020; 21(18): E6799. https://doi.org/10.3390/ijms21186799

Bates J, Vijayakumar A, Ghoshal S, Marchand B, Yi S, Kornyeyev D, et al. Acetyl-CoA carboxylase inhibition disrupts metabolic reprogramming during hepatic stellate cell activation. J Hepatol 2020; 73(4): 896-905. https://doi.org/10.1016/j.jhep.2020.04.037

Sunami Y. NASH, Fibrosis and Hepatocellular Carcinoma: Lipid Synthesis and Glutamine/Acetate Signaling. Int J Mol Sci 2020; 21(18): E6799. https://doi.org/10.3390/ijms21186799

Dowman JK, Tommlinson JW, Newsome PN. Pathogenesis of non-alcoholic fatty liver disease. QJM 2010; 103 (2): 71- 83. https://doi.org/10.1093/qjmed/hcp158

Schuster S, Cabrera D, Arrese M, Feldstein AE. Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol 2018; 15: 349-364. https://doi.org/10.1038/s41575-018-0009-6

Farrell GC, Haczeyni F, Chitturi S. Pathogenesis of NASH: How Metabolic Complications of Overnutrition Favour Lipotoxicity and Pro-Inflammatory Fatty Liver Disease. Adv Exp Med Biol 2018; 1061: 19-44. https://doi.org/10.1007/978-981-10-8684-7_3

Hwang S, He Y, Xiang X, Seo W, Kim SJ, Ma J, Ren T, Park SH, Zhou Z, Feng D, Kunos G, Gao B. Interleukin-22 Ameliorates Neutrophil-Driven Nonalcoholic Steatohepatitis Through Multiple Targets. Hepatology 2020; 72(2): 412-429. https://doi.org/10.1002/hep.31031

Mendez-Sánchez N,Valencia-Rodríguez A, Coronel-Castillo C, Vera-Barajas A, Contreras-Carmona J, PoncianoRodríguez G, Zamora-Valdés D. The cellular pathways of liver fibrosis in non-alcoholic steatohepatitis Ann Transl Med 2020; 8(6): 400. https://doi.org/10.21037/atm.2020.02.184

Liu XL, Pan Q, Cao HX, Xin FZ, et al. Lipotoxic HepatocyteDerived Exosomal MicroRNA 192-5p Activates Macrophages Through Rictor/Akt/Forkhead Box Transcription Factor O1 Signaling in Nonalcoholic Fatty Liver Disease. Hepatology 2020; 72 (2): 454-469. https://doi.org/10.1002/hep.31050

Lin HY, Yang YL, Wang PW, Wang FS, Huang YH.The Emerging Role of MicroRNAs in NAFLD: Highlight of MicroRNA-29a in Modulating Oxidative Stress, Inflammation, and Beyond. Cells 2020; 9(4): 1041. https://doi.org/10.3390/cells9041041

Azar S, Udi S, Drori A, Hadar R, Nemirovski A, Vemuri KV, et al. Reversal of diet-induced hepatic steatosis by peripheral CB1 receptor blockade in mice is p53/miRNA22/SIRT1/PPARα dependent. Mol Metab 2020; 26(42): 101087. https://doi.org/10.1016/j.molmet.2020.101087

Feldstein AE, Werneburg NW, Canbay A, Guicciardi ME, Bronk SF, Rydzewski R, Burgart LJ, Gores GJ. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology 2004; 185- 194. https://doi.org/10.1002/hep.20283

Rennert C, Heil T, Schicht G, Stilkerich A, Seidemann L, Kegel-Hübner V, Seehofer D, Damm G. Prolonged Lipid Accumulation in Cultured Primary Human Hepatocytes Rather Leads to ER Stress than Oxidative Stress. Int J Mol Sci 2020; 21(19): E7097. https://doi.org/10.3390/ijms21197097

Karstoli S, Kostara CE, Tsimihodimos V et al. Lipidomics in non-alcoholic fatty liver disease. World J of Hepatol 2020; 12(8): 436-450. https://doi.org/10.4254/wjh.v12.i8.436

Kakisaka K, Cazanave SC, Fingas CD, Guicciardi ME, Bronk SF, Werneburg NW, Mott JL, Gores GJ. Mechanisms of lysophosphatidylcholine-induced hepatocyte lipoapoptosis. Am. J. Physiol. Gastrointest. Liver Physiol 2012; 302: G77- G84. https://doi.org/10.1152/ajpgi.00301.2011

Lair B, Laurens C, Van Den Bosch B, Moro C. Novel Insights and Mechanisms of Lipotoxicity-Driven Insulin Resistance. Int J Mol Sci 2020; 21(17): 6358. https://doi.org/10.3390/ijms21176358

Anderson AK, Lambert JM, Montefusco DJ, Tran BN, Roddy P, Holland WL, Cowart LA. Depletion of adipocyte sphingosine kinase 1 leads to cell hypertrophy, impaired lipolysis, and nonalcoholic fatty liver disease. J Lipid Res 2020; 61(10): 1328-1340. https://doi.org/10.1194/jlr.RA120000875

Chen F, Esmaili S, Rogers GB, Bugianesi E, Petta S, Marchesini G, et al. Lean NAFLD: A Distinct Entity Shaped by Differential Metabolic Adaptation. Hepatology 2020; 71(4): 1213-1227. https://doi.org/10.1002/hep.30908

Chen J, Thomsen M, Vitetta L. Interaction of gut microbiota with dysregulation of bile acids in the pathogenesis of nonalcoholic fatty liver disease and potential therapeutic implications of probiotics. J Cell Biochem 2019; 120(3): 2713- 2720. https://doi.org/10.1002/jcb.27635

Chiang JYL.Targeting bile acids and lipotoxicity for NASH treatment. Hepatol Commun 2017; 1(10): 1002-1004. https://doi.org/10.1002/hep4.1127

Pawlik D, Lauterbach R, Walczak M, Hurkała J, Sherman MP. Fish-oil fat emulsion supplementation reduces the risk of retinopathy in very low birth weight infants: A prospective, randomized study. JPEN J Parenter Enter Nutr 2014; 38: 711-716. https://doi.org/10.1177/0148607113499373

Méndez-Sánchez N, González V, Aguayo P, Sánchez JM, Tanimoto MA, Elizondo J, Uribe M. Fish oil (n-3) polyunsaturated fatty acids beneficially affect biliary cholesterol nucleation time in obese women losing weight. J Nutr 2001; 131: 2300-2303. https://doi.org/10.1093/jn/131.9.2300

Tachtsis B, Whitfield J, Hawley JA, Hoffman NJ. Omega-3 Polyunsaturated Fatty Acids Mitigate Palmitate-Induced Impairments in Skeletal Muscle Cell Viability and Differentiation. Front Physiol 2020; 3(11): 563. https://doi.org/10.3389/fphys.2020.00563

Gui T, Li Y, Zhang S, Zhang N, Sun Y, Liu F, Chen Q, Gai Z. Docosahexaenoic acid protects against palmitate-induced mitochondrial dysfunction in diabetic cardiomyopathy. Biomed Pharmacother 2020; 128: 110306. https://doi.org/10.1016/j.biopha.2020.110306

Zamora-López K, Noriega LG, Estanes-Hernández A, Escalona-Nández I, Tobón-Cornejo S, Tovar AR, BarberoBecerra V, Pérez-Monter C. Punicica granatum L-derived omega 5 nanoemulsion improves hepatic steatosis in mice fec a high fat diet by incresing fatty acid utilization in hepatocytes. Scientific Reports 2020; 10: 15229. https://doi.org/10.1038/s41598-020-71878-y

Mohammadi M, Abbasalipourkabir R, Ziamajidi N.Fish oil and chicoric acid combination protects better against palmitateinduced lipid accumulation via regulating AMPK-mediated SREBP-1/FAS and PPARα/UCP2 pathways. Arch Physiol Biochem 2020; 11: 1-9. https://doi.org/10.1080/13813455.2020.1789881

Zhang E, Yin S, Zhao C, Fan L, Hu H. Involvement of activation of PLIN5-Sirt1 axis in protective effect of glycycoumarin on hepatic lipotoxicity. Biochem Biophys Res Commun 2020; 528(1): 7-13. https://doi.org/10.1016/j.bbrc.2020.05.072

Ouyang S, Mo Z, Sun S, Yin K, Lv Y. Emerging role of Insig1 in lipid metabolism and lipid disorders. Clin Chim Acta 2020; 508: 206-212. https://doi.org/10.1016/j.cca.2020.05.042

Qin YE, Duan L, He Y, Yuan C, Wang T, Yuan D, Zhang C, Liu C.Saturated Fatty Acids Promote Hepatocytic Senecence through Negative Regulation of miR-34a/Cyclin-dependent Kinase 6.Mol Nutr Food Res 2020; e2000383. https://doi.org/10.1002/mnfr.202000383

Farrell GC, Haceyni F, Chitturi S. Pathogenesis of NASH: How Metabolic Complications of Overnutrition Favour Lipotoxicity and Pro-Inflammatory Fatty Liver Disease. Adv Exp Med Biol 2018; 1061: 19-44. https://doi.org/10.1007/978-981-10-8684-7_3

Vitaglione P, Mazzone G, Lembo V, D'Argenio G, Rossi A, Guido M, et al. Coffee prevents fatty liver disease induced by a high-fat diet by modulating pathways of the gut-liver axis. J Nutr Sci 2019; 8: e15. https://doi.org/10.1017/jns.2019.10

Mikolasevic I, Domislovic V, Filipec Kanizaj T, Radic-Kristo D, Krznaric Z, Milovanovic T, et al. Relationship between coffee consumption, sleep duration and smoking status with elastographic parameters of liver steatosis and fibrosis; controlled attenuation parameter and liver stiffness measurements. Int J Clin Pract 2020: e13770. https://doi.org/10.22541/au.159542459.96867019

Hayat U, Siddiqui AA, Okut H, Afroz S, Tasleem S, Haris A. The effect of coffee consumption on the non-alcoholic fatty liver disease and liver fibrosis: A meta-analysis of 11 epidemiological studies. Ann Hepatol 2020; S1665-2681(20): 30169-1. https://doi.org/10.1016/j.aohep.2020.08.071

Mansour A, Mohajeri-Tehrani MR, Karimi S, Sanginabadi M, Poustchi H, Enayati S, Asgarbeik S, Nasrollahzadeh J, Hekmatdoost A. Short term effects of coffee components consumption on gut microbiota in patients with non-alcoholic fatty liver and diabetes: A pilot randomized placebocontrolled, clinical trial. EXCLI J 2020; 19: 241-250.

Lee CH, Fu Y, Yang SJ, Chi CC. Effects of Omega-3 Polyunsaturated Fatty Acid Supplementation on NonAlcoholic Fatty Liver: A Systematic Review and MetaAnalysis. Nutrients 2020; 12(9): 2769. https://doi.org/10.3390/nu12092769

Shama S, Liu W. Omega-3 Fatty Acids and Gut Microbiota: A Reciprocal Interaction in Nonalcoholic Fatty Liver Disease. Dig Dis Sci 2020; 65(3): 906-910. https://doi.org/10.1007/s10620-020-06117-5

Ferro D, Baratta F, Pastori D, Cocomello N, Colantoni A, Angelico F, Del Ben M. New Insights into the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Gut-Derived Lipopolysaccharides and Oxidative Stress. Nutrients 2020; 12(9): 2762. https://doi.org/10.3390/nu12092762

Pérez-Montes de Oca A, Julián MT, Ramos A, Puig-Domingo M, Alonso N. Microbiota, Fiber, and NAFLD: Is There Any Connection? Nutrients 2020; 12(10): E3100. https://doi.org/10.3390/nu12103100

Ramírez-Pérez O, Cruz-Ramón V, Chinchilla-López P, Méndez-Sánchez N. The Role of Gut Microbiota in Bile Acid Metabolism. Ann Hepatol 2017; 16: S21-S26. https://doi.org/10.5604/01.3001.0010.5672

Mizrahi M, Shabat Y, Ben Ya’acov A, Lalazar G, Adar T, Wong V, Muller B, Rawlin G, Ilan Y. Alleviation of insulin resistance and liver damage by oral administration of Imm124-E is mediated by increased Tregs and associated with increased serum GLP-1 and adiponectin: Results of a phase I/II clinical trial in NASH. J Inflamm Res 2012; 5: 141- 150. https://doi.org/10.2147/JIR.S35227

Hu H, Lin A, Kong M, Yao X, Yon M, Xia H, Ma J, Liu H. Intestinal microbioma and NAFLD: molecular insights and therapeutic perspectives. J Gastroetnerol 2020; 55(2): 142- 158. https://doi.org/10.1007/s00535-019-01649-8

Gangarapu V, Ince AT, Baysal B, Kayar Y, Kilic U, Gok O, Uysal O, Senturk H. Efficacy of rifaximin on circulating endotoxins and cytokines in patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 2015; 27(7): 840- 5. https://doi.org/10.1097/MEG.0000000000000348

Paolella G, Mandato C, Pierri L, et al. Gut-liver axis and probiotics: their role in non-alcoholic fatty liver disease. World J Gastroenterol 2014; 20: 15518-31. https://doi.org/10.3748/wjg.v20.i42.15518

Parassol N, Freitas M, Thoreux K, Dalmasso G, BourdetSicard R, Rampal P. Lactobacillus casei DN-114 001 inhibits the increase in paracellular permeability of enteropathogenic Escherichia coli-infected T84 cells. Res Microbiol 2005; 156: 256-262. https://doi.org/10.1016/j.resmic.2004.09.013

Karczewski J, Troost FJ, Konings I, Dekker J, Kleerebezem M, Brummer RJ, Wells JM. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am J Physiol Gastrointest Liver Physiol 2010; 298: G851-G859. https://doi.org/10.1152/ajpgi.00327.2009

Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, Harrison SA, Brunt EM, Sanyal AJ. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018; 67(1): 328-357. https://doi.org/10.1002/hep.29367

EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 2016; 64(6): 1388-402. https://doi.org/10.1016/j.jhep.2015.11.004

Alcala M, Calderon-Dominguez M, Serra D, Herrero L, Ramos MP, Viana M. Short-term vitamin E treatment impairs reactive oxygen species signaling required for adipose tissue expansion, resulting in fatty liver and insulin resistance in obese mice. PLoS One 2017; 12(10): e0186579. https://doi.org/10.1371/journal.pone.0186579

Alcalá M, Sánchez-Vera I, Sevillano J, Herrero L, Serra D, Ramos MP, Viana M. Vitamin E reduces adipose tissue fibrosis, inflammation, and oxidative stress and improves metabolic profile in obesity. Obesity (Silver Spring) 2015; 23(8): 1598-606. https://doi.org/10.1002/oby.21135

Hong SW, Lee J, Cho JH, Kwon H, Park SE, Rhee EJ, Park CY, Oh KW, Park SW, Lee WY. Pioglitazone Attenuates Palmitate-Induced Inflammation and Endoplasmic Reticulum Stress in Pancreatic β-Cells. Endocrinol Metab (Seoul) 2018; 33(1): 105-113. https://doi.org/10.3803/EnM.2018.33.1.105

Shen X, Yang L, Yan S, Zheng H, Liang L, Cai X, Liao M. Fetuin A promotes lipotoxicity in β cells through the TLR4 signaling pathway and the role of pioglitazone in antilipotoxicity. Mol Cell Endocrinol 2015; 412: 1-11. https://doi.org/10.1016/j.mce.2015.05.014

Lindor KD, Kowdley KV, Heathcote EJ, Harrison ME, Jorgensen R, Angulo P, et al. Ursodeoxycholic acid for treatment of nonalcoholic steatohepatitis: results of a randomized trial. Hepatology 2004; 39: 770-8. https://doi.org/10.1002/hep.20092

Leuschner UF, Lindenthal B, Herrmann G, Arnold JC, Rössle M, Cordes J, et al. High-dose ursodeoxycholic acid therapy for nonalcoholic steatohepatitis: a double-blind, randomized, placebo-controlled trial. Hepatology 2010; 52: 472-9. https://doi.org/10.1002/hep.23727

Shah RA, Kowdley KV. Obeticholic acid for the treatment of nonalcoholic steatohepatitis. Expert Rev Gastroenterol Hepatol 2020; 14(5): 311-321. https://doi.org/10.1080/17474124.2020.1748498

Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmark MF, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, nonalcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 2015; 385 (9972): 956-965. https://doi.org/10.1016/S0140-6736(14)61933-4

Ao N, Ma Z, Yang J, Jin S, Zhang K, Luo E, Du J. Liraglutide ameliorates lipotoxicity-induced inflammation through the mTORC1 signalling pathway. Peptides 2020; 133: 170375. https://doi.org/10.1016/j.peptides.2020.170375

Budd J, Cusi K. Role of Agents for the treatment of diabetes in the management of Non Alcoholic Fatty Liver Disease. Curr Diab Rep 2020; 20(11): 59. https://doi.org/10.1007/s11892-020-01349-1

Yan J, Yao B, Kuang H, Yang X, Huang Q, Hong T, et al. Liraglutide, Sitagliptin, and Insulin Glargine Added to Metformin: The Effect on Body Weight and Intrahepatic Lipid in Patients With Type 2 Diabetes Mellitus and Nonalcoholic Fatty Liver Disease.Hepatology 2019; 69(6): 2414-2426. https://doi.org/10.1002/hep.30320

Spigoni V, Fantuzzi F, Carubbi C, Pozzi G, Masselli E, Gobbi G, Solini A, Bonadonna RC, Dei Cas A. Sodium-glucose cotransporter 2 inhibitors antagonize lipotoxicity in human myeloid angiogenic cells and ADP-dependent activation in human platelets: potential relevance to prevention of cardiovascular events. Cardiovasc Diabetol 2020; 19(1): 46. https://doi.org/10.1186/s12933-020-01016-5

Hosokawa K, Takata T, Sugihara T, Matono T, Koda M, Kanda T, Taniguchi S, Ida A, Mae Y, Yamamoto M, Iyama T, Fukuda S, Isomoto H. Ipragliflozin Ameliorates Endoplasmic Reticulum Stress and Apoptosis through Preventing Ectopic Lipid Deposition in Renal Tubules. Int J Mol Sci 2019; 21(1): 190. https://doi.org/10.3390/ijms21010190

Honda Y, Imajo K, Kato T, Kessoku T, Ogawa Y, Tomeno W, Kato S, Mawatari H, Fujita K, Yoneda M, Saito S, Nakajima A. The Selective SGLT2 Inhibitor Ipragliflozin Has a Therapeutic Effect on Nonalcoholic Steatohepatitis in Mice. PLoS One 2016; 11(1): e0146337. https://doi.org/10.1371/journal.pone.0146337

Downloads

Published

2020-04-20

Issue

Section

Articles