Letter to the Editor: Radiofrequency Electromagnetic Fields and Possible Cancer Risk: Photochemical Aspects
DOI:
https://doi.org/10.12970/2308-8044.2020.08.10Keywords:
Photochemistry, radicals, reactive oxygen species, wireless technology, neuroimaging, electromagnetic fields.References
Jargin SV. Radiofrequency electromagnetic fields: Carcinogenic and other biological effects. Multidisciplinary Cancer Investigation 2019; 3(2): 05-13. https://doi.org/10.30699/acadpub.mci.3.2.5
Jargin S. Radiofrequency radiation: Ways to the risk assessment. Dose Response 2020; 18(3): 1559325820959557. https://doi.org/10.1177/1559325820959557
Gupta S, Sharma RS, Singh R. Non-ionizing radiation as possible carcinogen. Int J Environ Health Res 2020; 4: 1-25. https://doi.org/10.1080/09603123.2020.1806212
Alberty RA. Physical chemistry. 7th edition. New York: Wiley, 1987.
Verma SM, Murphy GM. Acute and chronic effects of ultraviolet radiation, visible light and infrared. In: Griesbeck A, Oelgemöller M, Ghetti F (Editors). CRC handbook of organic photochemistry and photobiology. Boca Raton: CRC Press, 2012; pp. 1463-71. https://doi.org/10.1201/b12252-62
Barnes F, Greenebaum B. Role of radical pairs and feedback in weak radio frequency field effects on biological systems. Environ Res. 2018; 163: 165-170. https://doi.org/10.1016/j.envres.2018.01.038
Santini SJ, Cordone V, Falone S, Mijit M, Tatone C, Amicarelli F et al. Role of mitochondria in the oxidative stress induced by electromagnetic fields: Focus on reproductive systems. Oxid Med Cell Longev. 2018; 2018: 5076271. https://doi.org/10.1155/2018/5076271
King MA, Clanton TL, Laitano O. Hyperthermia, dehydration, and osmotic stress: unconventional sources of exerciseinduced reactive oxygen species. Am J Physiol Regul Integr Comp Physiol 2016; 310: R105-14. https://doi.org/10.1152/ajpregu.00395.2015
Gius D, Mattson D, Bradbury CM, Smart DK, Spitz DR. Thermal stress and the disruption of redox-sensitive signalling and transcription factor activation: possible role in radiosensitization. Int J Hyperthermia 2004; 20: 213-23. https://doi.org/10.1080/02656730310001619505
Molin YuN, Anisimov OA, Koptyug AV, Saik VO, Antzutkin ON. Effect of external magnetic fields and resonanceradiofrequency radiation on radical reactions. Physica B 1990; 164: 200-4. https://doi.org/10.1016/0921-4526(90)90076-7
Falone S, Sannino A, Romeo S, Zeni O, Santini SJ, Rispoli R, et al. Protective effect of 1950 MHz electromagnetic field in human neuroblastoma cells challenged with menadione. Sci Rep 2018; 8: 13234. https://doi.org/10.1038/s41598-018-31636-7
Cao Y, Tong J. Adaptive response in animals exposed to non-ionizing radiofrequency fields: some underlying mechanisms. Int J Environ Res Public Health 2014; 11: 4441-8. https://doi.org/10.3390/ijerph110404441
Guerriero F, Ricevuti G. Extremely low frequency electromagnetic fields stimulation modulates autoimmunity and immune responses: a possible immuno-modulatory therapeutic effect in neurodegenerative diseases. Neural Regen Res 2016; 11: 1888-95. https://doi.org/10.4103/1673-5374.195277
National Toxicology Program. NTP technical report on the toxicology and carcinogenesis studies in HSD: Sprague Dawley rats exposed to whole‐body radio frequency radiation at a frequency (900 MHz) and modulations (GSM and CDMA) used by cell phone. Natl Toxicol Program Tech Rep Ser. 2018; 595: 1-380.
ICNIRP note on recent animal carcinogenesis studies. Munich, 2018. https://www.icnirp.org/cms/upload/ publications/ICNIRPnote2018.pdf
Calabrese EJ, Baldwin LA. Radiation hormesis: its historical foundations as a biological hypothesis. Hum Exp Toxicol 2000; 19: 41-75. https://doi.org/10.1191/096032700678815602
Calabrese EJ. The Muller-Neel dispute and the fate of cancer risk assessment. Environ Res 2020; 190: 109961. https://doi.org/10.1016/j.envres.2020.109961
Jargin SV. Hormesis and radiation safety norms: Comments for an update. Hum Exp Toxicol 2018; 37: 1233-43. https://doi.org/10.1177/0960327118765332
Scott BR. It's time for a new low-dose-radiation risk assessment paradigm--one that acknowledges hormesis. Dose Response 2008; 6(4): 333-51. https://doi.org/10.2203/dose-response.07-005.Scott
Schüz J, Jacobsen R, Olsen JH, Boice JD Jr, McLaughlin JK, Johansen C. Cellular telephone use and cancer risk: update of a nationwide Danish cohort. J. Natl. Cancer Inst 2006; 98: 1707-13. https://doi.org/10.1093/jnci/djj464
Cabré-Riera A, Marroun HE, Muetzel R, van Wel L, Liorni I, Thielens A, et al. Estimated whole-brain and lobe-specific radiofrequency electromagnetic fields doses and brain volumes in preadolescents. Environ Int 2020; 142: 105808. https://doi.org/10.1016/j.envint.2020.105808
Sienkiewicz Z, van Rongen E, Croft R, Ziegelberger G, Veyret B. A closer look at the thresholds of thermal damage: workshop report by an ICNIRP task group. Health Phys 2016; 111: 300-6. https://doi.org/10.1097/HP.0000000000000539
Grigoriev YuG, Samoylov AS, Bushmanov AYu, Khorseva NI. Cellular connection and the health of children – problem of the third millennium. Med Radiol Radiat Saf 2017; 62(2): 39-46. https://doi.org/10.12737/article_58f0b9573ddc88.95867893
Winter L, Oberacker E, Paul K, Ji Y, Oezerdem C, Ghadjar P, et al. Magnetic resonance thermometry: Methodology, pitfalls and practical solutions. Int J Hyperthermia 2016; 32(1): 63- 75. https://doi.org/10.3109/02656736.2015.1108462
Sienkiewicz Z, Calderon C, Broom KA, Addison D, Gavard A, Lundberg L, et al. Are exposures to multiple frequencies the key to future radiofrequency research? Front Public Health 2017; 5: 328. https://doi.org/10.3389/fpubh.2017.00328
Braga-Tanaka I 3rd, Tanaka S, Kohda A, Takai D, Nakamura S, Ono T, et al. Experimental studies on the biological effects of chronic low dose-rate radiation exposure in mice: overview of the studies at the Institute for Environmental Sciences. Int J Radiat Biol 2018; 94: 423-33. https://doi.org/10.1080/09553002.2018.1451048