Potentials and Limitations of Bile Acids in Type 2 Diabetes Mellitus: Applications of Microencapsulation as a Novel Oral Delivery System 

Authors

  • Rebecca Negrulj Curtin Health Innovation Research Institute, Biosciences Research Precinct, School of Pharmacy, Curtin University, Perth WA, Australia
  • Armin Mooranian
  • Hani Al-Salami

DOI:

https://doi.org/10.12970/2310-9971.2013.01.02.4

Keywords:

 Microencapsulation, type 2 diabetes, bile acids, inflammation.

Abstract

 Type 2 diabetes (T2D) is a chronic metabolic disorder resulting from genetic and environmental factors that bring about tissue desensitization to insulin and consequent hyperglycemia. Despite strict glycemic control and the fact that new and more effective antidiabetic drugs are continuously appearing on the market, diabetic patients still suffer from the disease and its complications. Recent findings present a strong link between diabetes, inflammation, altered gut microbiota and bile acid (BA) disturbances. BAs are naturally produced in humans and are gaining an appreciable interest as an adjunct treatment for T2D due to their endocrine signalling and anti-inflammatory properties. However a significant limitation to their efficacy is their low oral absorption, poor targeted delivery, gut metabolism and inter- and intra-individual dose variations. Thus there is a need for a novel and robust formulation that will encapsulate the BAs and protect them until they reach the lower intestine allowing them to be clinically beneficial. Artificial Cell Microencapsulation (ACM) is a novel oral delivery system for biologically active molecules and has been used significantly in the delivery of various cells and therapeutics. ACM-BA formulation has the potential to optimise BA efficacy and safety profiles and may have a place in the treatment of diabetes. This review aims to investigate the applications of BAs in T2D and the use of ACM as a novel delivery system for their optimum delivery. 

References


[1] Patel D, Kumar R, Laloo D, Hemalatha S. Diabetes mellitus: An overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pac J Trop Biomed 2012; 2: 411-20. http://dx.doi.org/10.1016/S2221-1691(12)60067-7
[2] Zarrinpar A, Loomba R. Review article: the emerging interplay among the gastrointestinal tract, bile acids and incretins in the pathogenesis of diabetes and non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2012; 36: 909-21. http://dx.doi.org/10.1111/apt.12084
[3] Barnett R. Historical keyword: diabetes. Lancet 2010; 375: 191. http://dx.doi.org/10.1016/S0140-6736(10)60079-7
[4] Mikov M A-SH, Golocorbin-Kon G. Potentials and Limitations of Bile Acids and Probiotics in Diabetes Mellitus. 2012. p. 365- 402.
[5] Nolan CJ, Damm P, Prentki M. Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet; 378: 169-81. http://dx.doi.org/10.1016/S0140-6736(11)60614-4
[6] Kouidhi S, Berrhouma R, Rouissi K, et al. Human subcutaneous adipose tissue Glut 4 mRNA expression in obesity and type 2 diabetes. Acta Diabetol 2013; 50: 227-32. http://dx.doi.org/10.1007/s00592-011-0295-8
[7] James DE, Piper RC. Insulin resistance, diabetes, and the insulin-regulated trafficking of GLUT-4. J Cell Biol 1994; 126: 1123-6. http://dx.doi.org/10.1083/jcb.126.5.1123
[8] Goldfine AB, Fonseca V, Shoelson SE. Therapeutic approaches to target inflammation in type 2 diabetes. Clinl Chem 2011; 57: 162-7. http://dx.doi.org/10.1373/clinchem.2010.148833
[9] Kolb H, Mandrup-Poulsen T. An immune origin of type 2 diabetes? Diabetologia 2005; 48: 1038-50. http://dx.doi.org/10.1007/s00125-005-1764-9
[10] Fan MY, Lum ZP, Fu XW, Levesque L, Tai IT, Sun AM. Reversal of diabetes in BB rats by transplantation of encapsulated pancreatic islets. Diabetes 1990; 39: 519-22. http://dx.doi.org/10.2337/diab.39.4.519
[11] Li T, Chiang JY. Bile Acid signaling in liver metabolism and diseases. J Lipids 2012; 2012: 754067.
[12] Al-Kassas RS, Al-Gohary OM, Al-Faadhel MM. Controlling of systemic absorption of gliclazide through incorporation into alginate beads. Int J Pharm 2007; 341: 230-7. http://dx.doi.org/10.1016/j.ijpharm.2007.03.047
[13] Prawitt J, Caron S, Staels B. Bile acid metabolism and the pathogenesis of type 2 diabetes. Curr Diab Rep 2011; 11: 160-6. http://dx.doi.org/10.1007/s11892-011-0187-x
[14] Taylor R. Type 2 diabetes: etiology and reversibility. Diabetes Care 2013; 36: 1047-55. http://dx.doi.org/10.2337/dc12-1805
[15] Al-Salami H CR, Golocorbin-Kon S, Mikov M. Probiotics application in autoimmune diseases. Intech 2012: 325-66.
[16] Martinez-Moya P, Romero-Calvo I, Requena P, et al. Dosedependent antiinflammatory effect of ursodeoxycholic acid in experimental colitis. Int Immunopharmacol 2013; 15: 372-80. http://dx.doi.org/10.1016/j.intimp.2012.11.017
[17] Festi D, Schiumerini R, Birtolo C, et al. Gut microbiota and its pathophysiology in disease paradigms. Dig Dis 2011; 29: 518-24. http://dx.doi.org/10.1159/000332975
[18] Varbanova M, Malfertheiner P. Bacterial load and degree of gastric mucosal inflammation in Helicobacter pylori infection. Dig Dis 2011; 29: 592-9. http://dx.doi.org/10.1159/000333260
[19] Firouzi S, Barakatun-Nisak MY, Ismail A, Majid HA, Azmi KN. Role of probiotics in modulating glucose homeostasis: evidence from animal and human studies. Int J Food Sci Nutr 2013; 64: 780-6. http://dx.doi.org/10.3109/09637486.2013.775227
[20] Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des 2009; 15: 1546-58. http://dx.doi.org/10.2174/138161209788168164
[21] Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008; 57: 1470-81. http://dx.doi.org/10.2337/db07-1403
[22] Cani PD, Neyrinck AM, Fava F, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 2007; 50: 2374-83. http://dx.doi.org/10.1007/s00125-007-0791-0
[23] Chikai T, Nakao H, Uchida K. Deconjugation of bile acids by human intestinal bacteria implanted in germ-free rats. Lipids 1987; 22: 669-71. http://dx.doi.org/10.1007/BF02533948
[24] Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 2011; 11: 98-107. http://dx.doi.org/10.1038/nri2925
[25] Backhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 2007; 104: 979-84. http://dx.doi.org/10.1073/pnas.0605374104
[26] Duboc H, Rajca S, Rainteau D, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 2013; 62: 531-9. http://dx.doi.org/10.1136/gutjnl-2012-302578
[27] Muccioli GG, Naslain D, Backhed F, et al. The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol 2010; 6: 392. http://dx.doi.org/10.1038/msb.2010.46
[28] Amar J, Chabo C, Waget A, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 2011; 3: 559-72. http://dx.doi.org/10.1002/emmm.201100159
[29] Torpy JM, Lynm C, Glass RM. Diabetes. JAMA 2009; 301: 1620. http://dx.doi.org/10.1001/jama.301.15.1620
[30] Keane DC, Takahashi HK, Dhayal S, Morgan NG, Curi R, Newsholme P. Arachidonic acid actions on functional integrity and attenuation of the negative effects of palmitic acid in a clonal pancreatic beta-cell line. Clin Sci 2011; 120: 195-206. http://dx.doi.org/10.1042/CS20100282
[31] Liu JH, Liu DF, Wang NN, Lin HL, Mei X. Possible role for the thioredoxin system in the protective effects of probucol in the pancreatic islets of diabetic rats. Clin Exp Pharmacol Physiol 2011; 38: 528-33. http://dx.doi.org/10.1111/j.1440-1681.2011.05545.x
[32] Parthasarathy S, Young SG, Witztum JL, Pittman RC, Steinberg D. Probucol inhibits oxidative modification of low density lipoprotein. J Clin Invest 1986; 77: 641-4. http://dx.doi.org/10.1172/JCI112349
[33] Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 2009; 89: 147-91. http://dx.doi.org/10.1152/physrev.00010.2008
[34] Kim GB LB. Biochemical and molecular insights into bile salt hydrolase in the gastrointestinal microflora - a review. Food Research & Development Centre, Agriculture and Agri- Food Canada 2005; 1505-15.
[35] Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 2008; 7: 678-93. http://dx.doi.org/10.1038/nrd2619
[36] Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile acid membrane receptor TGR5: a valuable metabolic target. Dig Dis 2011; 29: 37-44. http://dx.doi.org/10.1159/000324126
[37] Einarsson C, Hillebrant CG, Axelson M. Effects of treatment with deoxycholic acid and chenodeoxycholic acid on the hepatic synthesis of cholesterol and bile acids in healthy subjects. Hepatology 2001; 33: 1189-93. http://dx.doi.org/10.1053/jhep.2001.23790
[38] Mosbach EH, Kalinsky HJ, Halpern E, Kendall FE. Determination of deoxycholic and cholic acids in bile. Arch Biochem Biophys 1954; 51: 402-10. http://dx.doi.org/10.1016/0003-9861(54)90495-6
[39] Thomas C, Auwerx J, Schoonjans K. Bile acids and the membrane bile acid receptor TGR5--connecting nutrition and metabolism. Thyroid 2008; 18: 167-74. http://dx.doi.org/10.1089/thy.2007.0255
[40] Bergstrom S, Lindstedt S, Samuelsson B. Bile acids and steroids. LXXXII. On the mechanism of deoxycholic acid formation in the rabbit. J Biol Chem 1959; 234: 2022-5.
[41] Renga B, Mencarelli A, Vavassori P, Brancaleone V, Fiorucci S. The bile acid sensor FXR regulates insulin transcription and secretion. Biochim Biophys Acta 2010; 1802: 363-72. http://dx.doi.org/10.1016/j.bbadis.2010.01.002
[42] Wagner M, Zollner G, Trauner M. Nuclear bile acid receptor farnesoid X receptor meets nuclear factor-kappaB: new insights into hepatic inflammation. Hepatology 2008; 48: 1383-6. http://dx.doi.org/10.1002/hep.22668
[43] Roberts MS, Magnusson BM, Burczynski FJ, Weiss M. Enterohepatic circulation: physiological, pharmacokinetic and clinical implications. Clin Pharmacokinet 2002; 41: 751-90. http://dx.doi.org/10.2165/00003088-200241100-00005
[44] Nervi FO, Severin CH, Valdivieso VD. Bile acid pool changes and regulation of cholate synthesis in experimental diabetes. Biochim Biophys Acta 1978; 529: 212-23. http://dx.doi.org/10.1016/0005-2760(78)90064-4
[45] Morimoto K IH, Watanabe M. Developments in undertsanding bile acid metabolism. ProQuest 2013; 8: 59- 69.
[46] Gilliland SE, Speck ML. Deconjugation of bile acids by intestinal lactobacilli. Appl Environ Microbiol 1977; 33: 15-8.
[47] Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006; 47(2): 241-59. http://dx.doi.org/10.1194/jlr.R500013-JLR200
[48] Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 2008; 8: 411-20. PubMed PMID: 18469830. http://dx.doi.org/10.1038/nri2316
[49] Baijal PK, Fitzpatrick DW, Bird RP. Modulation of colonic xenobiotic metabolizing enzymes by feeding bile acids: comparative effects of cholic, deoxycholic, lithocholic and ursodeoxycholic acids. Food Chem Toxicol 1998; 36: 601-7. http://dx.doi.org/10.1016/S0278-6915(98)00020-9
[50] Renga B, Mencarelli A, Cipriani S, et al. The bile acid sensor FXR is required for immune-regulatory activities of TLR-9 in intestinal inflammation. PloS One 2013; 8: e54472. http://dx.doi.org/10.1371/journal.pone.0054472
[51] Inagaki T, Choi M, Moschetta A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Betab 2005; 2: 217-25.
[52] Holzer A, Harsch S, Renner O, et al. Diminished expression of apical sodium-dependent bile acid transporter in gallstone disease is independent of ileal inflammation. Digestion 2008; 78: 52-9. http://dx.doi.org/10.1159/000159379
[53] Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. EMBO J 2006; 25: 1419-25. http://dx.doi.org/10.1038/sj.emboj.7601049
[54] Staels B, Fonseca VA. Bile acids and metabolic regulation: mechanisms and clinical responses to bile acid sequestration. Diabetes Care 2009; 32 (Suppl 2): S237-45. http://dx.doi.org/10.2337/dc09-S355
[55] Vos TA, Hooiveld GJ, Koning H, et al. Up-regulation of the multidrug resistance genes, Mrp1 and Mdr1b, and downregulation of the organic anion transporter, Mrp2, and the bile salt transporter, Spgp, in endotoxemic rat liver. Hepatology 1998; 28: 1637-44. http://dx.doi.org/10.1002/hep.510280625
[56] Schou J, Tybjaerg-Hansen A, Moller HJ, Nordestgaard BG, Frikke-Schmidt R. ABC transporter genes and risk of type 2 diabetes: a study of 40,000 individuals from the general population. Diabetes Care 2012; 35: 2600-6. http://dx.doi.org/10.2337/dc12-0082
[57] Mei D, Li J, Liu H, et al. Induction of multidrug resistanceassociated protein 2 in liver, intestine and kidney of streptozotocin-induced diabetic rats. Xenobiotica 2012; 42: 709-18. http://dx.doi.org/10.3109/00498254.2011.654363
[58] Efentakis M, Buckton G. The effect of erosion and swelling on the dissolution of theophylline from low and high viscosity sodium alginate matrices. Pharm Dev Technol 2002; 7: 69- 77. http://dx.doi.org/10.1081/PDT-120002232
[59] Barakat NS A-SG, Almedany AH. Development of Novel controlled release gliclazide-loaded poly (e-caprolactone) microparticles: effect of polymer blends. Pharm Anal Acta 2012; 3: 1-9. http://dx.doi.org/10.4172/2153-2435.1000150
[60] Dorati R, Genta I, Modena T, Conti B. Microencapsulation of a hydrophilic model molecule through vibration nozzle and emulsion phase inversion technologies. J Microencapsul 2013; 30: 559-70. http://dx.doi.org/10.3109/02652048.2013.764938
[61] Ding WK, Shah NP. Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria. J Food Sci 2007; 72: M446-50. http://dx.doi.org/10.1111/j.1750-3841.2007.00565.x
[62] Sliwka W. Microencapsulation. Angew Chem 1975; 14: 539- 50. http://dx.doi.org/10.1002/anie.197505391
[63] Murua A, Portero A, Orive G, Hernandez RM, de Castro M, Pedraz JL. Cell microencapsulation technology: towards clinical application. J Control Release 2008; 132: 76-83. http://dx.doi.org/10.1016/j.jconrel.2008.08.010
[64] Orive G, Hernandez RM, Rodriguez Gascon A, et al. History, challenges and perspectives of cell microencapsulation. Trends Biotechnol 2004; 22: 87-92. http://dx.doi.org/10.1016/j.tibtech.2003.11.004
[65] Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm 2004; 282: 1-18. http://dx.doi.org/10.1016/j.ijpharm.2004.04.013
[66] Singh MN, Hemant KS, Ram M, Shivakumar HG. Microencapsulation: a promising technique for controlled drug delivery. Res Pharm Sci 2010; 5: 65-77.
[67] Al-Salami H, Butt G, Tucker I, Golocorbin-Kon S, Mikov M. Probiotics decreased the bioavailability of the bile acid analog, monoketocholic acid, when coadministered with gliclazide, in healthy but not diabetic rats. Eur J Drug Metab Pharmacokinet 2012; 37: 99-108. http://dx.doi.org/10.1007/s13318-011-0060-y
[68] Miura S, Teramura Y, Iwata H. Encapsulation of islets with ultra-thin polyion complex membrane through poly(ethylene glycol)-phospholipids anchored to cell membrane. Biomaterials 2006; 27: 5828-35. http://dx.doi.org/10.1016/j.biomaterials.2006.07.039
[69] Chavarri M, Maranon I, Ares R, Ibanez FC, Marzo F, Villaran Mdel C. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int J Food Micriobiol 2010; 142: 185-9. http://dx.doi.org/10.1016/j.ijfoodmicro.2010.06.022
[70] Mitrevej A, Sinchaipanid N, Rungvejhavuttivittaya Y, Kositchaiyong V. Multiunit controlled-release diclofenac sodium capsules using complex of chitosan with sodium alginate or pectin. Pharm Dev Technol 2001; 6: 385-92. http://dx.doi.org/10.1081/PDT-100002247
[71] Whelehan M, Marison IW. Microencapsulation using vibrating technology. J Microencapsul 2011; 28: 669-88. http://dx.doi.org/10.3109/02652048.2011.586068
[72] Kendall W, Darrabie M, Freeman B, Hobbs H, Collins B, Opara E. Effect of bead swelling on the durability of polylysine alginate microcapsules. Curr Surg 2000; 57: 636- 7. http://dx.doi.org/10.1016/S0149-7944(00)00354-8
[73] Koch S, Schwinger C, Kressler J, Heinzen C, Rainov NG. Alginate encapsulation of genetically engineered mammalian cells: comparison of production devices, methods and microcapsule characteristics. J Microencapsul 2003; 20: 303- 16.
[74] Tapia-Albarran M, Villafuerte-Robles L. Effect of formulation and process variables on the release behavior of amoxicillin matrix tablets. Drug Dev Ind Pharm 2004; 30: 901-8. http://dx.doi.org/10.1081/DDC-200034594
[75] Sugiura S, Oda T, Izumida Y, et al. Size control of calcium alginate beads containing living cells using micro-nozzle array. Biomaterials 2005; 26: 3327-31. http://dx.doi.org/10.1016/j.biomaterials.2004.08.029
[76] Sanchez P, Hernandez RM, Pedraz JL, Orive G. Encapsulation of cells in alginate gels. Methods Mol Biol 2013; 1051: 313-25. http://dx.doi.org/10.1007/978-1-62703-550-7_21
[77] Patil P CD, Wagh M. A review on ionotropic gelation method: novel approach for controlled gastroretentive gelispheres. Int J Pharm 2012; 4: 27-32.
[78] Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV. Microencapsulation of probiotics for gastrointestinal delivery. J Control Release 2012; 162: 56-67. http://dx.doi.org/10.1016/j.jconrel.2012.06.003

Downloads

Published

2013-02-02

Issue

Section

Articles