Re-Visiting Glutamate Toxicity: Implications of Monosodium Glutamate Consumption on Glutamate Metabolism and Metabolic Syndrome 

Authors

  • P.E. Day Department of Physiology, Development and Neuroscience, Anatomy Building, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
  • B. Matata Department of Clinical Research, The Liverpool Heart & Chest Hospital NHS Foundation Trust, Thomas Drive, Liverpool, L14 3PE, UK
  • M. Elahi Division of Cardiothoracic Surgery, Department of Surgery, Texas A & M Health Science Centre at Scott & White Memorial Hospital, 2401 S. 31st Street, Temple, Tx, 76508, USA

DOI:

https://doi.org/10.12970/2310-9971.2015.03.01.5

Keywords:

 Diabetes, Glutamate, metabolic syndrome, insulin resistance, aminotransferases.

Abstract

 Around a quarter of the world’s population is estimated to have metabolic syndrome (metS) which is a major risk factor for type II diabetes, cardiovascular disease and death. While the neurotoxicity of monosodium glutamate (MSG) has long been ruled out, recent trends suggest that excessive MSG intake may be associated with metS. Considering that some enzymes involved in glutamate metabolism predict early onset of metS, and that glutamate is involved in gluconeogenesis, energy production, insulin secretion and fatty acid synthesis and that it creates a perfect environment for the activation of mTOR, which subsequently leads to cell growth and autophagy inhibition, we propose that altered glutamate metabolism plays a central role in the cellular deregulation that leads to the development of metS. While recent studies have highlighted the role of aminotransferase enzymes and glutamine-recycling in metabolic syndrome, here we extend upon these concepts and provide fundamental mechanisms through which altered glutamate metabolism as a result of increased MSG consumption may play a role in the pathogenesis of metS. We propose that excessive MSG consumption leads to metS development via mechanisms involving deregulated glutamate metabolism and this is manifested through changes in glutamate metabolic enzymes and glutamate derived metabolites. Understanding whether MSG plays a role in the pathogenesis of metS is important for policy makers in food additive regulations as this may allow the prevention of debilitating diseases associated with metS. Furthermore, understanding the mechanisms involved in altered glutamate metabolism may provide important targets for diagnosing, preventing and treating metS. 

References


[1] Insawang T, Selmi C, Cha'on U, et al. Monosodium glutamate (MSG) intake is associated with the prevalence of metabolic syndrome in a rural Thai population. Nutrition & Metabolism 2012; 9(1): 50. http://dx.doi.org/10.1186/1743-7075-9-50
[2] Hermanussen M, Garcia AP, Sunder M, Voigt M, Salazar V, Tresguerres JA. Obesity, voracity, and short stature: the impact of glutamate on the regulation of appetite. European Journal of Clinical Nutrition 2006; 60(1): 25-31. http://dx.doi.org/10.1038/sj.ejcn.1602263
[3] Brosnan JT. Glutamate, at the interface between amino acid and carbohydrate metabolism. The Journal of Nutrition 2000; 130(4S Suppl): 988S-90S.
[4] Jinap S, Hajeb P. Glutamate. Its applications in food and contribution to health. Appetite 2010; 55(1): 1-10. http://dx.doi.org/10.1016/j.appet.2010.05.002
[5] Battezzati A, Brillon DJ, Matthews DE. Oxidation of glutamic acid by the splanchnic bed in humans. The American Journal of Physiology 1995; 269(2 Pt 1): E269-76.
[6] Hays SP, Ordonez JM, Burrin DG, Sunehag AL. Dietary glutamate is almost entirely removed in its first pass through the splanchnic bed in premature infants. Pediatric Research 2007; 62(3): 353-6. http://dx.doi.org/10.1203/PDR.0b013e318123f719
[7] Matthews DE, Marano MA, Campbell RG. Splanchnic bed utilization of glutamine and glutamic acid in humans. The American Journal of Physiology 1993; 264(6 Pt 1): E848-54.
[8] Belfiore F, Iannello S. Fatty-Acid Synthesis from Glutamate in the Adipose-Tissue of Normal Subjects and Obese Patients - an Enzyme Study. Biochem Mol Med 1995; 54(1): 19-25. http://dx.doi.org/10.1006/bmme.1995.1003
[9] Carobbio S, Ishihara H, Fernandez-Pascual S, Bartley C, Martin-del-Rio R, Maechler P. Insulin secretion profiles are modified by overexpression of glutamate dehydrogenase in pancreatic islets. Diabetologia 2004; 47(2): 266-76. http://dx.doi.org/10.1007/s00125-003-1306-2
[10] Collison KS, Maqbool Z, Saleh SM, et al. Effect of dietary monosodium glutamate on trans fat-induced nonalcoholic fatty liver disease. J Lipid Res 2009; 50(8): 1521-37. http://dx.doi.org/10.1194/jlr.M800418-JLR200
[11] Hoy M, Maechler P, Efanov AM, Wollheim CB, Berggren PO, Gromada J. Increase in cellular glutamate levels stimulates exocytosis in pancreatic beta-cells. Febs Lett 2002; 531(2): 199-203. http://dx.doi.org/10.1016/S0014-5793(02)03500-7
[12] Maechler P, Wollheim CB. Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature 1999; 402(6762): 685-9. http://dx.doi.org/10.1038/45280
[13] Duran M, Gunebakmaz O, Uysal OK, et al. Increased gamma-glutamyl transferase level is associated with absence of coronary collateral vessels in patients with acute coronary syndrome: an observational study. Anadolu kardiyoloji dergisi: AKD = the Anatolian Journal of Cardiology 2012; 12(8): 652-8.
[14] Duran RV, Hall MN. Glutaminolysis feeds mTORC1. Cell Cycle 2012; 11(22): 4107-8. http://dx.doi.org/10.4161/cc.22632
[15] Duran RV, Oppliger W, Robitaille AM, et al. Glutaminolysis activates Rag-mTORC1 signaling. Molecular Cell 2012; 47(3): 349-58. http://dx.doi.org/10.1016/j.molcel.2012.05.043
[16] Nicklin P, Bergman P, Zhang B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009; 136(3): 521-34. http://dx.doi.org/10.1016/j.cell.2008.11.044
[17] Newsholme P, Procopio J, Lima MM, Pithon-Curi TC, Curi R. Glutamine and glutamate--their central role in cell metabolism and function. Cell Biochemistry and Function 2003; 21(1): 1-9. http://dx.doi.org/10.1002/cbf.1003
[18] Sookoian S, Pirola CJ. Alanine and aspartate aminotransferase and glutamine-cycling pathway: their roles in pathogenesis of metabolic syndrome. World Journal of Gastroenterology: WJG 2012; 18(29): 3775-81. http://dx.doi.org/10.3748/wjg.v18.i29.3775
[19] Rhodes J, Titherley AC, Norman JA, Wood R, Lord DW. A survey of the monosodium glutamate content of foods and an estimation of the dietary intake of monosodium glutamate. Food Additives and Contaminants 1991; 8(5): 663-72. http://dx.doi.org/10.1080/02652039109374021
[20] Beyreuther K, Biesalski HK, Fernstrom JD, et al. Consensus meeting: monosodium glutamate - an update. European Journal of Clinical Nutrition 2007; 61(3): 304-13. http://dx.doi.org/10.1038/sj.ejcn.1602526
[21] Society GN. The Nutrition Report 2004. Bonn, Germany: Deutsche Gesellschaft für Ernährung - MedienService 2004.
[22] He K, Du S, Xun P, et al. Consumption of monosodium glutamate in relation to incidence of overweight in Chinese adults: China Health and Nutrition Survey (CHNS). Am J Clin Nutr 2011; 93(6): 1328-36. http://dx.doi.org/10.3945/ajcn.110.008870
[23] Research UIoF. Food Matters: Towards a Strategy for the 21st Century 2008: 19-0.
[24] USDHSS. PART 182—Substances that are generally recognized as safe 2014; 21(182.1a).
[25] Walker R, Lupien JR. The safety evaluation of monosodium glutamate. Journal of Nutrition 2000; 130(4): 1049s-52s.
[26] Anderson SA, Fisher KD, Raiten DJ. Safety of Amino-Acids Used as Dietary-Supplements - Reply. Am J Clin Nutr 1993; 57(6): 945-6.
[27] Kuhn KS, Stehle P, Furst P. Glutamine content of protein and peptide-based enteral products. Jpen-Parenter Enter 1996; 20(4): 292-5. http://dx.doi.org/10.1177/0148607196020004292
[28] Bellisle F, Dalix AM, Chapppuis AS, et al. Monosodium glutamate affects mealtime food selection in diabetic patients. Appetite 1996; 26(3): 267-75. http://dx.doi.org/10.1006/appe.1996.0020
[29] Collison KS, Zaidi MZ, Saleh SM, et al. Effect of trans-fat, fructose and monosodium glutamate feeding on feline weight gain, adiposity, insulin sensitivity, adipokine and lipid profile. Brit J Nutr 2011; 106(2): 218-26. http://dx.doi.org/10.1017/S000711451000588X
[30] Dawson R, Pelleymounter MA, Millard WJ, Liu S, Eppler B. Attenuation of leptin-mediated effects by monosodium glutamate-induced arcuate nucleus damage. The American Journal of Physiology 1997; 273(1 Pt 1): E202-6.
[31] Hirata AE, Andrade IS, Vaskevicius P, Dolnikoff MS. Monosodium glutamate (MSG)-obese rats develop glucose intolerance and insulin resistance to peripheral glucose uptake. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica [et al] 1997; 30(5): 671-4.
[32] Nakamura H, Kawamata Y, Kuwahara T, Smriga M, Sakai R. Long-Term Ingestion of Monosodium L-Glutamate Did Not Induce Obesity, Dyslipidemia or Insulin Resistance: A TwoGeneration Study in Mice. J Nutr Sci Vitaminol 2013; 59(2): 129-35. http://dx.doi.org/10.3177/jnsv.59.129
[33] Olney JW, Sharpe LG. Brain lesions in an infant rhesus monkey treated with monsodium glutamate. Science 1969; 166(3903): 386-8. http://dx.doi.org/10.1126/science.166.3903.386
[34] Rogers PJ, Blundell JE. Umami and Appetite - Effects of Monosodium Glutamate on Hunger and Food-Intake in Human-Subjects. Physiology & Behavior 1990; 48(6): 801-4. http://dx.doi.org/10.1016/0031-9384(90)90230-2
[35] Bellisle F. Experimental studies of food choices and palatability responses in European subjects exposed to the Umami taste. Asia Pacific Journal of Clinical Nutrition 2008; 17 Suppl 1: 376-9.
[36] Chevassus H, Renard E, Bertrand G, et al. Effects of oral monosodium (L)-glutamate on insulin secretion and glucose tolerance in healthy volunteers. British Journal of Clinical Pharmacology 2002; 53(6): 641-3. http://dx.doi.org/10.1046/j.1365-2125.2002.01596.x
[37] Graham TE, Sgro V, Friars D, Gibala MJ. Glutamate ingestion: the plasma and muscle free amino acid pools of resting humans. American Journal of Physiology Endocrinology and Metabolism 2000; 278(1): E83-9.
[38] He K, Zhao L, Daviglus ML, et al. Association of monosodium glutamate intake with overweight in Chinese adults: the INTERMAP Study. Obesity 2008; 16(8): 1875-80. http://dx.doi.org/10.1038/oby.2008.274
[39] Schiffman SS, Warwick ZS. Effect of flavor enhancement of foods for the elderly on nutritional status: food intake, biochemical indices, and anthropometric measures. Physiology & Behavior 1993; 53(2): 395-402. http://dx.doi.org/10.1016/0031-9384(93)90224-4
[40] He K, Daviglus ML, Stamler J. Response to Evidence That MSG Does Not Induce Obesity. Obesity 2009; 17(4): 630-1. http://dx.doi.org/10.1038/oby.2008.632
[41] Barba C, Cavalli-Sforza T, Cutter J, et al. Appropriate bodymass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004; 363(9403): 157-63. http://dx.doi.org/10.1016/S0140-6736(03)15268-3
[42] Consultation WHOE. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004; 363(9403): 157-63. http://dx.doi.org/10.1016/S0140-6736(03)15268-3
[43] Alberti KG, Zimmet P, Shaw J, Group IDFETFC. The metabolic syndrome--a new worldwide definition. Lancet 2005; 366(9491): 1059-62. http://dx.doi.org/10.1016/S0140-6736(05)67402-8
[44] Day PEL, Cleal JK, Lofthouse EM, et al. Partitioning of glutamine synthesised by the isolated perfused human placenta between the maternal and fetal circulations. Placenta 2013; 34(12): 1223-31. http://dx.doi.org/10.1016/j.placenta.2013.10.003
[45] Day PE, Cleal JK, Lofthouse EM, Hanson MA, Lewis RM. What factors determine placental glucose transfer kinetics? Placenta 2013; 34(10): 953-8. http://dx.doi.org/10.1016/j.placenta.2013.07.001
[46] Barker DJ. Fetal nutrition and cardiovascular disease in later life. British Medical Bulletin 1997; 53(1): 96-108. http://dx.doi.org/10.1093/oxfordjournals.bmb.a011609
[47] Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Human Development 2006; 82(8): 485-91. http://dx.doi.org/10.1016/j.earlhumdev.2006.07.001
[48] Rahman TM, Wendon J. Severe hepatic dysfunction in pregnancy. QJM: Monthly Journal of the Association of Physicians 2002; 95(6): 343-57. http://dx.doi.org/10.1093/qjmed/95.6.343
[49] Girling JC, Dow E, Smith JH. Liver function tests in preeclampsia: importance of comparison with a reference range derived for normal pregnancy. Br J Obstet Gynaecol 1997; 104(2): 246-50. http://dx.doi.org/10.1111/j.1471-0528.1997.tb11054.x
[50] Bernal W, Hall C, Karvellas CJ, Auzinger G, Sizer E, Wendon J. Arterial ammonia and clinical risk factors for encephalopathy and intracranial hypertension in acute liver failure. Hepatology 2007; 46(6): 1844-52. http://dx.doi.org/10.1002/hep.21838
[51] Odibo AO, Goetzinger KR, Odibo L, et al. First-trimester prediction of preeclampsia using metabolomic biomarkers: a discovery phase study. Prenatal Diag 2011; 31(10): 990-4. http://dx.doi.org/10.1002/pd.2822
[52] Thackeray EM, Tielborg MC. Posterior reversible encephalopathy syndrome in a patient with severe preeclampsia. Anesth Analg 2007; 105(1): 184-6. http://dx.doi.org/10.1213/01.ane.0000265553.36391.96
[53] Bellamy L, Casas JP, Hingorani AD, Williams DJ. Preeclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. Brit Med J 2007; 335(7627): 974-7. http://dx.doi.org/10.1136/bmj.39335.385301.BE
[54] Odegard RA, Vatten LJ, Nilsen ST, Salvesen KA, Austgulen R. Risk factors and clinical manifestations of pre-eclampsia. Brit J Obstet Gynaec 2000; 107(11): 1410-6. http://dx.doi.org/10.1111/j.1471-0528.2000.tb11657.x
[55] Schwartz RB, Feske SK, Polak JF, et al. Preeclampsiaeclampsia: Clinical and neuroradiographic correlates and insights into the pathogenesis of hypertensive encephalopathy. Radiology 2000; 217(2): 371-6. http://dx.doi.org/10.1148/radiology.217.2.r00nv44371
[56] Vatten LJ, Odegard RA, Nilsen ST, Salvesen KA, Austgulen R. Relationship of insulin-like growth factor-I and insulin-like growth factor binding proteins in umbilical cord plasma to preeclampsia and infant birth weight. Obstet Gynecol 2002; 99(1): 85-90. http://dx.doi.org/10.1016/S0029-7844(01)01651-9
[57] Collison KS. Response to Effect of Dietary Monosodium Glutamate on HFCS-Induced Hepatic Steatosis: Additional Information. Obesity 2011; 19(5): 901-2. http://dx.doi.org/10.1038/oby.2010.222
[58] Dief AE, Kamha ES, Baraka AM, Elshorbagy AK. Monosodium glutamate neurotoxicity increases beta amyloid in the rat hippocampus: A potential role for cyclic AMP protein kinase. Neurotoxicology 2014; 42: 76-82. http://dx.doi.org/10.1016/j.neuro.2014.04.003
[59] Silva EC, Martins IS, de Araujo EA. [Metabolic syndrome and short stature in adults from the metropolitan area of Sao Paulo city (SP, Brazil)]. Ciencia & saude coletiva 2011; 16(2): 663-8. http://dx.doi.org/10.1590/S1413-81232011000200030
[60] Collison K, Maqbool Z, Saleh S, et al. Dietary Monosodium Glutamate Exacerbates Trans Fat-Induced Nonalcoholic Fatty Liver Disease. J Hepatol 2009; 50: S263-S.
[61] Ayala JE, Samuel VT, Morton GJ, et al. Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Disease Models & Mechanisms 2010; 3(9-10): 525-34. http://dx.doi.org/10.1242/dmm.006239
[62] Tsai PJ, Huang PC. Circadian variations in plasma and erythrocyte glutamate concentrations in adult men consuming a diet with and without added monosodium glutamate. The Journal of Nutrition 2000; 130(4S Suppl): 1002S-4S.
[63] Fan JG, Li F, Cai XB, Peng YD, Ao QH, Gao Y. Effects of nonalcoholic fatty liver disease on the development of metabolic disorders. Journal of Gastroenterology and Hepatology 2007; 22(7): 1086-91. http://dx.doi.org/10.1111/j.1440-1746.2006.04781.x
[64] K IAMKABA. Liver function tests in type 2 Sudanese diabetic patients. Nutrition and Metabolism Nutrition and Metabolism 2012; 3(2): 17-21.
[65] Fraser A, Harris R, Sattar N, Ebrahim S, Davey Smith G, Lawlor DA. Alanine aminotransferase, gammaglutamyltransferase, and incident diabetes: the British Women's Heart and Health Study and meta-analysis. Diabetes Care 2009; 32(4): 741-50. http://dx.doi.org/10.2337/dc08-1870
[66] Lee DS, Evans JC, Robins SJ, et al. Gamma glutamyl transferase and metabolic syndrome, cardiovascular disease, and mortality risk: the Framingham Heart Study. Arteriosclerosis, Thrombosis, and Vascular Biology 2007; 27(1): 127-33. http://dx.doi.org/10.1161/01.ATV.0000251993.20372.40
[67] Sattar N, McConnachie A, Ford I, et al. Serial metabolic measurements and conversion to type 2 diabetes in the west of Scotland coronary prevention study: specific elevations in alanine aminotransferase and triglycerides suggest hepatic fat accumulation as a potential contributing factor. Diabetes 2007; 56(4): 984-91. http://dx.doi.org/10.2337/db06-1256
[68] Wannamethee SG, Whincup PH, Shaper AG, Lennon L, Sattar N. Gamma-glutamyltransferase, hepatic enzymes, and risk of incident heart failure in older men. Arteriosclerosis, Thrombosis, and Vascular Biology 2012; 32(3): 830-5. http://dx.doi.org/10.1161/ATVBAHA.111.240457
[69] Farombi EO, Onyema OO. Monosodium glutamate-induced oxidative damage and genotoxicity in the rat: modulatory role of vitamin C, vitamin E and quercetin. Hum Exp Toxicol 2006; 25(5): 251-9.
[70] Onyema OO, Farombi EO, Emerole GO, Ukoha AI, Onyeze GO. Effect of vitamin E on monosodium glutamate induced hepatotoxicity and oxidative stress in rats. Indian Journal of Biochemistry & Biophysics 2006; 43(1): 20-4. http://dx.doi.org/10.1191/0960327106ht621oa
[71] Tawfik M A-B. Adverse Effects of Monosodium Glutamate on Liver and Kidney Functions in Adult Rats and Potential Protective Effect of Vitamins C and E Food and Nutrition Sciences 2012; 3(5): 651-9.
[72] Ankarcrona M, Dypbukt JM, Bonfoco E, et al. GlutamateInduced Neuronal Death - a Succession of Necrosis or Apoptosis Depending on Mitochondrial-Function. Neuron 1995; 15(4): 961-73. http://dx.doi.org/10.1016/0896-6273(95)90186-8
[73] Nicotera P, Leist M, Bonfoco E, Lipton SA. Mechanisms of neuronal apoptosis elicited by glutamate or nitric oxide donors. Nitric Oxide and the Cell 1998: 215-20.
[74] Oberlinner C, Zober A, Nawroth PP, Humpert PM, Morcos M. Alanine-aminotransferase levels predict impaired glucose tolerance in a worksite population. Acta diabetologica 2010; 47(2): 161-5. http://dx.doi.org/10.1007/s00592-009-0148-x
[75] Haberg A, Qu H, Bakken IJ, Sande LM, et al. In vitro and ex vivo C-13-NMR spectroscopy studies of pyruvate recycling in brain. Dev Neurosci-Basel 1998; 20(4-5): 389-98. http://dx.doi.org/10.1159/000017335
[76] Olstad E, Olsen GM, Qu H, Sonnewald U. Pyruvate recycling in cultured neurons from cerebellum. J Neurosci Res 2007; 85(15): 3318-25. http://dx.doi.org/10.1002/jnr.21208
[77] Munday MR. Regulation of mammalian acetyl-CoA carboxylase. Biochem Soc T 2002; 30: 1059-64. http://dx.doi.org/10.1042/BST0301059
[78] Goodpaster BH, Theriault R, Watkins SC, Kelley DE. Intramuscular lipid content is increased in obesity and decreased by weight loss. Metabolism-Clinical and Experimental 2000; 49(4): 467-72. http://dx.doi.org/10.1016/S0026-0495(00)80010-4
[79] Jacob S, Machann J, Rett K, et al. Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes 1999; 48(5): 1113-9. http://dx.doi.org/10.2337/diabetes.48.5.1113
[80] Krssak M, Petersen KF, Dresner A, et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a H-1 NMR spectroscopy study (Rapid communication) (vol 42, pg 113, 1999). Diabetologia 1999; 42(10): 1269.
[81] Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 2009; 119(5): 1322- 34. http://dx.doi.org/10.1172/JCI37385
[82] Adiels M, Olofsson SO, Taskinen MR, Boren J. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscl Throm Vas 2008; 28(7): 1225-36. http://dx.doi.org/10.1161/ATVBAHA.107.160192
[83] Ginsberg HN, Zhang YL, Hernandez-Ono A. Metabolic syndrome: Focus on dyslipidemia. Obesity 2006; 14: 41s-9s. http://dx.doi.org/10.1038/oby.2006.281
[84] Taskinen MR. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia 2003; 46(6): 733-49. http://dx.doi.org/10.1007/s00125-003-1111-y
[85] Andre P, Balkau B, Vol S, Charles MA, Eschwege E, Balkau B. gamma-glutamyltransferase activity and development of the metabolic syndrome (International Diabetes Federation definition) in middle-aged men and women - Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR) cohort. Diabetes Care 2007; 30(9): 2355-61. http://dx.doi.org/10.2337/dc07-0440
[86] Lorenzo C, Hanley AJ, Rewers MJ, Haffner SM. The association of alanine aminotransferase within the normal and mildly elevated range with lipoproteins and apolipoproteins: the Insulin Resistance Atherosclerosis Study. Diabetologia 2013; 56(4): 746-57. http://dx.doi.org/10.1007/s00125-012-2826-4
[87] MacDonald MJ, Fahien LA. Glutamate is not a messenger in insulin secretion. J Biol Chem 2000; 275(44): 34025-7. http://dx.doi.org/10.1074/jbc.C000411200
[88] Allen A, Kwagh J, Fang J, Stanley CA, Smith TJ. Evolution of glutamate dehydrogenase regulation of insulin homeostasis is an example of molecular exaptation. Biochemistry-Us 2004; 43(45): 14431-43. http://dx.doi.org/10.1021/bi048817i
[89] Stanley CA. Regulation of glutamate metabolism and insulin secretion by glutamate dehydrogenase in hypoglycemic children. Am J Clin Nutr 2009; 90(3): 862s-6s. http://dx.doi.org/10.3945/ajcn.2009.27462AA
[90] Vetterli L, Carobbio S, Pournourmohammadi S, et al. Delineation of glutamate pathways and secretory responses in pancreatic islets with beta-cell-specific abrogation of the glutamate dehydrogenase. Molecular Biology of the Cell 2012; 23(19): 3851-62. http://dx.doi.org/10.1091/mbc.E11-08-0676
[91] Fahien LA, MacDonald MJ. The succinate mechanism of insulin release. Diabetes 2002; 51(9): 2669-76. http://dx.doi.org/10.2337/diabetes.51.9.2669
[92] Fahien LA, MacDonald MJ. The Complex Mechanism of Glutamate Dehydrogenase in Insulin Secretion. Diabetes 2011; 60(10): 2450-4. http://dx.doi.org/10.2337/db10-1150
[93] Moriya S, Nagata S, Yokoyama H, et al. Expression of Gamma-Glutamyl-Transpeptidase Messenger-Rna after Depletion of Glutathione Ln Rat-Liver. Alcohol Alcoholism 1994; 29: 107-11.
[94] Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT. Glutamate Toxicity in a Neuronal Cell-Line Involves Inhibition of Cystine Transport Leading to Oxidative Stress. Neuron 1989; 2(6): 1547-58. http://dx.doi.org/10.1016/0896-6273(89)90043-3
[95] Chen YM, Swanson RA. The glutamate transporters EAAT2 and EAAT3 mediate cysteine uptake in cortical neuron cultures. J Neurochem 2003; 84(6): 1332-9. http://dx.doi.org/10.1046/j.1471-4159.2003.01630.x
[96] Kato S, Negishi K, Mawatari K, Kuo CH. A Mechanism for Glutamate Toxicity in the C6 Glioma-Cells Involving Inhibition of Cystine Uptake Leading to Glutathione Depletion. Neuroscience 1992; 48(4): 903-14. http://dx.doi.org/10.1016/0306-4522(92)90278-A
[97] Khan DA, Shabbir S, Khan FA. Serum Gamma Glutamyl Transferase: A Novel Biomarker for Screening of Premature Coronary Artery Disease. Clin Chem 2009; 55(6): A51-A.
[98] Tan S, Sagara Y, Liu Y, Maher P, Schubert D. The regulation of reactive oxygen species production during programmed cell death. The Journal of Cell Biology 1998; 141(6): 1423- 32. http://dx.doi.org/10.1083/jcb.141.6.1423
[99] Singh K, Ahluwalia P. Effect of monosodium glutamate on lipid peroxidation and certain antioxidant enzymes in cardiac tissue of alcoholic adult male mice. Journal of Cardiovascular Disease Research 2012; 3(1): 12-8. http://dx.doi.org/10.4103/0975-3583.91595
[100] Singh K, Kaur J, Ahluwalia P, Sharma J. Effect of monosodium glutamate on various lipid fractions and certain antioxidant enzymes in arterial tissue of chronic alcoholic adult male mice. Toxicology International 2012; 19(1): 9-14. http://dx.doi.org/10.4103/0971-6580.94507
[101] Di Cairano ES, Davalli AM, Perego L, et al. The Glial Glutamate Transporter 1 (GLT1) Is Expressed by Pancreatic beta-Cells and Prevents Glutamate-induced beta-Cell Death. J Biol Chem 2011; 286(16): 14007-18. http://dx.doi.org/10.1074/jbc.M110.183517

Downloads

Published

2015-08-03

Issue

Section

Articles