Effects of Pentoxifylline on Exercising Skeletal Muscle Vascular Control in Rats with Chronic Heart Failure
DOI:
https://doi.org/10.12970/2311-052X.2014.02.01.7Keywords:
Cytokine, oxygen, vascular blood flow, myocardial infarctionAbstract
Purpose: Chronic heart failure (CHF) is hallmarked by cardiac and peripheral vasculature dysfunction which has been associated with elevations in tumor necrosis factor-α (TNF-α) and exercise intolerance. The pharmaceutical TNF-α synthesis suppressor pentoxifylline (PTX) reduces plasma [TNF-α] and improves left ventricular (LV) function in CHF rats, but the effects of PTX on skeletal muscle blood flow (BF) and vascular conductance (VC) during exercise are unknown. We tested the hypothesis that PTX would elevate skeletal muscle BF and VC at rest and during submaximal treadmill exercise in CHF rats and improve exercise tolerance and peak O2 uptake.
Methods: CHF rats (coronary artery ligation) received i.p. injections of 30 mg·kg-1·day-1of PTX (CHF+PTX, n=13) or saline (CHF, n=8) for 21 days. BF was measured using radiolabeled microspheres at rest and during exercise (treadmill, 20 m/min-1, 5% grade).
Results: Resting and exercising mean arterial pressures (MAP) were greater in CHF+PTX compared to CHF (i.e., closer to expected healthy values, both p<0.05). During exercise PTX increased total hindlimb BF (CHF: 83±9, CHF+PTX: 114±8 ml·min-1·100g-1, p<0.05) and VC (CHF: 0.75±0.08, CHF+PTX: 0.88±0.06 ml·min-1·100g-1·mmHg-1, p<0.05). Furthermore, exercising BF was increased in 21 and VC in 11, of the 28 individual hindlimb muscles or muscle parts with no apparent fiber-type specificity.
Conclusions: PTX administration augments skeletal muscle BF and VC during locomotory exercise in CHF rats, but the lack of increased exercise tolerance or peak O2 uptake suggest continued peripheral O2 pathway dysfunction.
References
Poole DC, Hirai DM, Copp SW, Musch TI. Muscle oxygen transport and utilization in heart failure: implications for exercise (in)tolerance. Am J Physiol Heart Circ Physiol 2012; 302: H1050-63.
Miyazaki A, Adachi H, Oshima S, Taniguchi K, Hasegawa A, Kurabayashi M. Blood flow redistribution during exercise contributes to exercise tolerance in patients with chronic heart failure. Circ J 2007; 71: 465-70. http://dx.doi.org/10.1253/circj.71.465
Musch TI, Terrell JA. Skeletal muscle blood flow abnormalities in rats with a chronic myocardial infarction: rest and exercise. Am J Physiol 1992; 262(Pt 2): H411-9.
Richardson TE, Kindig CA, Musch TI, Poole DC. Effects of chronic heart failure on skeletal muscle capillary hemodynamics at rest and during contractions. J Appl Physiol 2003; 95: 1055-62.
Conraads VM, Van Craenenbroeck EM, De Maeyer C, Van Berendoncks AM, Beckers PJ, Vrints CJ. Unraveling new mechanisms of exercise intolerance in chronic heart failure: role of exercise training. Heart Fail Rev 2013; 18: 65-77. http://dx.doi.org/10.1007/s10741-012-9324-0
Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 1990; 323: 236-41. http://dx.doi.org/10.1056/NEJM199007263230405
Milani RV, Mehra MR, Endres S, et al. The clinical relevance of circulating tumor necrosis factor-alpha in acute decompensated chronic heart failure without cachexia. Chest 1996; 110: 992-5. http://dx.doi.org/10.1378/chest.110.4.992
Guggilam A, Patel KP, Haque M, Ebenezer PJ, Kapusta DR, Francis J. Cytokine blockade attenuates sympathoexcitation in heart failure: cross-talk between nNOS, AT-1R and cytokines in the hypothalamic paraventricular nucleus. Eur J Heart Fail 2008; 10: 625-34. http://dx.doi.org/10.1016/j.ejheart.2008.05.004
Balligand JL, Ungureanu D, Kelly RA, et al. Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest 1993; 91: 2314-9. http://dx.doi.org/10.1172/JCI116461
Ceconi C, Curello S, Bachetti T, Corti A, Ferrari R. Tumor necrosis factor in congestive heart failure: a mechanism of disease for the new millennium? Prog Cardiovasc Dis 1998; 41(Suppl 1): 25-30. http://dx.doi.org/10.1016/S0033-0620(98)80028-5
Li YP, Reid MB. Effect of tumor necrosis factor-alpha on skeletal muscle metabolism. Curr Opin Rheumatol 2001; 13: 483-7. http://dx.doi.org/10.1097/00002281-200111000-00005
Doherty GM, Jensen JC, Alexander HR, Buresh CM, Norton JA. Pentoxifylline suppression of tumor necrosis factor gene transcription. Surgery 1991; 110: 192-8.
Sliwa K, Woodiwiss A, Kone VN, et al. Therapy of ischemic cardiomyopathy with the immunomodulating agent pentoxifylline: results of a randomized study. Circulation 2004; 109: 750-5. http://dx.doi.org/10.1161/01.CIR.0000112568.48837.60
Guggilam A, Cardinale JP, Mariappan N, Sriramula S, Haque M, Francis J. Central TNF inhibition results in attenuated neurohumoral excitation in heart failure: a role for superoxide and nitric oxide. Basic Res Cardiol 2011; 106: 273-86. http://dx.doi.org/10.1007/s00395-010-0146-8
Ferguson SK, Hirai DM, Copp SW, et al. Impact of dietary nitrate supplementation via beetroot juice on exercising muscle vascular control in rats. J Physiol 2013; 591(Pt 2): 547-57. http://dx.doi.org/10.1113/jphysiol.2012.243121
Musch TI, Moore RL, Smaldone PG, Riedy M, Zelis R. Cardiac adaptations to endurance training in rats with a chronic myocardial infarction. J Appl Physiol 1989; 66: 712-9.
Copp SW, Davis RT, Poole DC, Musch TI. Reproducibility of endurance capacity and VO2peak in male Sprague-Dawley rats. J Appl Physiol 2009; 106: 1072-8. http://dx.doi.org/10.1152/japplphysiol.91566.2008
Brooks GA, White TP. Determination of metabolic and heart rate responses of rats to treadmill exercise. J Appl Physiol Respir Environ Exerc Physiol 1978; 45: 1009-15.
Musch TI, Bruno A, Bradford GE, Vayonis A, Moore RL. Measurements of metabolic rate in rats: a comparison of techniques. J Appl Physiol 1988; 65: 964-70.
Armstrong RB, Hayes DA, Delp MD. Blood flow distribution in rat muscles during preexercise anticipatory response. J Appl Physiol 1989; 67: 1855-61.
Cunnion RE, Parrillo JE. Myocardial dysfunction in sepsis. Recent insights. Chest 1989; 95: 941-5. http://dx.doi.org/10.1378/chest.95.5.941
Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL. Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 1992; 257: 387-9. http://dx.doi.org/10.1126/science.1631560
Hegewisch S, Weh HJ, Hossfeld DK. TNF-induced cardiomyopathy. Lancet 1990; 335: 294-5. http://dx.doi.org/10.1016/0140-6736(90)90115-L
Guggilam A, Haque M, Kerut EK, et al. TNF-alpha blockade decreases oxidative stress in the paraventricular nucleus and attenuates sympathoexcitation in heart failure rats. Am J Physiol Heart Circ Physiol 2007; 293: H599-609. http://dx.doi.org/10.1152/ajpheart.00286.2007
Pfeifer PC, Musch TI, McAllister RM. Skeletal muscle oxidative capacity and exercise tolerance in rats with heart failure. Med Sci Sports Exerc 2001; 33: 542-8. http://dx.doi.org/10.1097/00005768-200104000-00006
Suschek C, Rothe H, Fehsel K, Enczmann J, Kolb-Bachofen V. Induction of a macrophage-like nitric oxide synthase in cultured rat aortic endothelial cells. IL-1 beta-mediated induction regulated by tumor necrosis factor-alpha and IFN-gamma. J Immunol 1993; 151: 3283-91.
Blum A, Miller H. Pathophysiological role of cytokines in congestive heart failure. Annu Rev Med 2001; 52: 15-27. http://dx.doi.org/10.1146/annurev.med.52.1.15
Stosic-Grujicic SD, Maksimovic DD, Stojkovic MB, Lukic ML. Pentoxifylline prevents autoimmune mediated inflammation in low dose streptozotocin induced diabetes. Dev Immunol 2001; 8: 213-21. http://dx.doi.org/10.1155/2001/37209
Hirai T, Musch TI, Morgan DA, et al. Differential sympathetic nerve responses to nitric oxide synthase inhibition in anesthetized rats. Am J Physiol 1995; 269(Pt 2): R807-13.
Hirai T, Visneski MD, Kearns KJ, Zelis R, Musch TI. Effects of NO synthase inhibition on the muscular blood flow response to treadmill exercise in rats. J Appl Physiol 1994; 77: 1288-93.
Behnke BJ, Armstrong RB, Delp MD. Adrenergic control of vascular resistance varies in muscles composed of different fiber types: influence of the vascular endothelium. Am J Physiol Regul Integr Comp Physiol 2011; 301: R783-90. http://dx.doi.org/10.1152/ajpregu.00205.2011
Thomas GD, Hansen J, Victor RG. Inhibition of alpha 2-adrenergic vasoconstriction during contraction of glycolytic, not oxidative, rat hindlimb muscle. Am J Physiol 1994; 266(Pt 2): H920-9.
Sinzinger H. Pentoxifylline enhances formation of prostacyclin from rat vascular and renal tissue. Prostaglandins Leukot Med 1983; 12: 217-26. http://dx.doi.org/10.1016/0262-1746(83)90085-9
Kim NY, Pae HO, Kim YC, et al. Pentoxifylline potentiates nitric oxide production in interleukin-1beta-stimulated vascular smooth muscle cells through cyclic AMP-dependent protein kinase A pathway. Gen Pharmacol 2000; 35: 205-11. http://dx.doi.org/10.1016/S0306-3623(01)00108-2
Frampton JE, Brogden RN. Pentoxifylline (oxpentifylline). A review of its therapeutic efficacy in the management of peripheral vascular and cerebrovascular disorders. Drugs Aging 1995; 7: 480-503. http://dx.doi.org/10.2165/00002512-199507060-00007
Geor RJ, Weiss DJ, Burris SM, Smith CM, 2nd. Effects of furosemide and pentoxifylline on blood flow properties in horses. Am J Vet Res 1992; 53: 2043-9.
Musch TI, Wolfram S, Hageman KS, Pickar JG. Skeletal muscle ouabain binding sites are reduced in rats with chronic heart failure. J Appl Physiol 2002; 92: 2326-34.
Diederich ER, Behnke BJ, McDonough P, et al. Dynamics of microvascular oxygen partial pressure in contracting skeletal muscle of rats with chronic heart failure. Cardiovasc Res 2002; 56: 479-86. http://dx.doi.org/10.1016/S0008-6363(02)00545-X
Sinoway LI, Minotti JR, Davis D, et al. Delayed reversal of impaired vasodilation in congestive heart failure after heart transplantation. Am J Cardiol 1988; 61: 1076-9. http://dx.doi.org/10.1016/0002-9149(88)90129-4
Bahrmann P, Hengst UM, Richartz BM, Figulla HR. Pentoxifylline in ischemic, hypertensive and idiopathic-dilated cardiomyopathy: effects on left-ventricular function, inflammatory cytokines and symptoms. Eur J Heart Fail 2004; 6: 195-201. http://dx.doi.org/10.1016/j.ejheart.2003.09.005
Skudicky D, Bergemann A, Sliwa K, Candy G, Sareli P. Beneficial effects of pentoxifylline in patients with idiopathic dilated cardiomyopathy treated with angiotensin-converting enzyme inhibitors and carvedilol: results of a randomized study. Circulation 2001; 103: 1083-8. http://dx.doi.org/10.1161/01.CIR.103.8.1083
Xu L, Poole DC, Musch TI. Effect of heart failure on muscle capillary geometry: implications for 02 exchange. Med Sci Sports Exerc 1998; 30: 1230-7. http://dx.doi.org/10.1097/00005768-199808000-00008
Kindig CA, Musch TI, Basaraba RJ, Poole DC. Impaired capillary hemodynamics in skeletal muscle of rats in chronic heart failure. J Appl Physiol 1999; 87: 652-60.
Wust RC, Myers DS, Stones R, et al. Regional skeletal muscle remodeling and mitochondrial dysfunction in right ventricular heart failure. Am J Physiol Heart Circ Physiol 2012; 302: H402-11.
Arnolda L, Brosnan J, Rajagopalan B, Radda GK. Skeletal muscle metabolism in heart failure in rats. Am J Physiol 1991; 261(Pt 2): H434-42.
Delp MD, Duan C, Mattson JP, Musch TI. Changes in skeletal muscle biochemistry and histology relative to fiber type in rats with heart failure. J Appl Physiol 1997; 83:
-9.
Helwig B, Schreurs KM, Hansen J, et al. Training-induced changes in skeletal muscle Na+-K+ pump number and isoform expression in rats with chronic heart failure. J Appl Physiol 2003; 94: 2225-36.
Perreault CL, Gonzalez-Serratos H, Litwin SE, Sun X, Franzini-Armstrong C, Morgan JP. Alterations in contractility and intracellular Ca2+ transients in isolated bundles of skeletal muscle fibers from rats with chronic heart failure. Circ Res 1993; 73: 405-12. http://dx.doi.org/10.1161/01.RES.73.2.405
Poole-Wilson PA, Buller NP, Lipkin DP. Regional blood flow, muscle strength and skeletal muscle histology in severe congestive heart failure. Am J Cardiol 1988; 62: 49E-52E. http://dx.doi.org/10.1016/S0002-9149(88)80011-0
Ferguson SK, Hirai DM, Copp SW, et al. Effects of nitrate supplementation via beetroot juice on contracting rat skeletal muscle microvascular oxygen pressure dynamics. Respir Physiol Neurobiol 2013; 187: 250-5. http://dx.doi.org/10.1016/j.resp.2013.04.001
Hirai DM, Copp SW, Holdsworth CT, et al. Skeletal muscle microvascular oxygenation dynamics in heart failure: exercise training and nitric oxide-mediated function. Am J Physiol Heart Circ Physiol 2014 Jan 10. [Epub ahead of print]. http://dx.doi.org/10.1152/ajpheart.00901.2013
Jones AM, Bailey SJ, Vanhatalo A. Dietary nitrate and O(2) consumption during exercise. Med Sport Sci 2012; 59: 29-35. http://dx.doi.org/10.1159/000342062
Fishbein MC, Maclean D, Maroko PR. Experimental myocardial infarction in the rat: qualitative and quantitative changes during pathologic evolution. Am J Pathol 1978; 90: 57-70.
Ferrari R, Bachetti T, Confortini R, et al. Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure. Circulation 1995; 92: 1479-86. http://dx.doi.org/10.1161/01.CIR.92.6.1479
Kenjale AA, Ham KL, Stabler T, et al. Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease. J Appl Physiol 2011; 110: 1582-91. http://dx.doi.org/10.1152/japplphysiol.00071.2011