Cannabinoid Receptor Type 2 (CB2) Dependent and Independent Effects of WIN55,212-2 on Atherosclerosis in Ldlr-null Mice

Authors

  • Courtney Netherland-Van Dyke Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
  • Ward Rodgers Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
  • Makenzie Fulmer Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
  • Zachary Lahr Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
  • Douglas Thewke Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA

DOI:

https://doi.org/10.12970/2311-052X.2015.03.02.2

Keywords:

 Atherosclerosis, Cannabinoid Receptor, WIN55,212-2

Abstract

Purpose: WIN55,212-2, a potent synthetic agonist of cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2), reduces atherosclerosis in apolipoprotein E (ApoE) null mice. Although pharmacologic evidence suggests the anti-atherosclerotic effects of WIN55,212-2 are mediated via CB2, this remains to be confirmed by genetic studies. Therefore, in this study, we investigated the effects of WIN55,212-2 on development of atherosclerosis in low-density lipoprotein receptor (Ldlr) null mice with and without homozygous deletion of the CB2 gene.

Methods: After 6 weeks on an atherogenic diet, groups of CB2+/+ and CB2-/- Ldlr-null mice received a daily intraperitoneal injection of WIN55,212-2 or vehicle. After two weeks, plasma lipid levels and atherosclerosis in the aortic root were quantified.

Results: Plasma cholesterol and triglyceride levels did not differ between CB2+/+ and CB2-/- mice and WIN55,212-2 had no effect on total cholesterol levels in either genotype. However, triglyceride levels in both CB2+/+ and CB2-/- mice were significantly lowered by WIN55,212-2. The size of aortic root lesions did not differ significantly between CB2+/+ and CB2-/- mice with or without WIN55,212-2 treatment. However, WIN55,212-2 treatment significantly lowered lesional macrophage accumulation in CB2+/+ mice, and lesional smooth muscle content in both CB2+/+ and CB2-/- mice. Lesional apoptosis was also greater in CB2+/+ mice compared to CB2-/-mice, and only reduced by WIN55,212-2 in CB2+/+ mice. Collagen content and elastin fiber fragmentation were unaffected by genotype or WIN55,212-2.

Conclusions: WIN55,212-2 treatment does not alter lesion size in Ldlr null-mice, but does modify lesion cellularity via CB2-dependent and CB2-independent mechanisms.

References

Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation 2010; 121(7): e46-e215. http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192667

Libby P. Inflammation in atherosclerosis. Nature 2002; 420(6917): 868-74. http://dx.doi.org/10.1038/nature01323

Pacher P, Batkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacological reviews 2006; 58(3): 389-462. http://dx.doi.org/10.1124/pr.58.3.2

Klein TW. Cannabinoid-based drugs as anti-inflammatory therapeutics. Nature reviews Immunology 2005; 5(5): 400-11. http://dx.doi.org/10.1038/nri1602

Di Marzo V, Bifulco M, De Petrocellis L. The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov 2004; 3(9): 771-84. http://dx.doi.org/10.1038/nrd1495

Mach F, Steffens S. The role of the endocannabinoid system in atherosclerosis. J Neuroendocrinol 2008; 20 Suppl 1: 53-7. http://dx.doi.org/10.1111/j.1365-2826.2008.01685.x

Netherland CD, Pickle TG, Bales A, Thewke DP. Cannabinoid receptor type 2 (CB2) deficiency alters atherosclerotic lesion formation in hyperlipidemic Ldlr-null mice. Atherosclerosis 2010; 213(1): 102-8. http://dx.doi.org/10.1016/j.atherosclerosis.2010.07.060

Steffens S, Veillard NR, Arnaud C, et al. Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice. Nature 2005; 434(7034): 782-6. http://dx.doi.org/10.1038/nature03389

Zhao Y, Liu Y, Zhang W, et al. WIN55212-2 ameliorates atherosclerosis associated with suppression of pro-inflammatory responses in ApoE-knockout mice. Eur J Pharmacol 2010; 649(1-3): 285-92. http://dx.doi.org/10.1016/j.ejphar.2010.09.027

Zhao Y, Yuan Z, Liu Y, et al. Activation of cannabinoid CB2 receptor ameliorates atherosclerosis associated with suppression of adhesion molecules. J Cardiovasc Pharmacol 2010; 55(3): 292-8. http://dx.doi.org/10.1097/FJC.0b013e3181d2644d

Delsing DJ, Leijten FP, Arts K, et al. Cannabinoid Receptor 2 Deficiency in Haematopoietic cells Aggravates Early Atherosclerosis in LDL Receptor Deficient Mice. Open Cardiovasc Med J 2011; 5: 15-21. http://dx.doi.org/10.2174/1874192401105010015

Hoyer FF, Steinmetz M, Zimmer S, et al. Atheroprotection via cannabinoid receptor-2 is mediated by circulating and vas-cular cells in vivo. J Mol Cell Cardiol. 2011; 51(6): 1007-14. http://dx.doi.org/10.1016/j.yjmcc.2011.08.008

Liu J, Gao B, Mirshahi F, et al. Functional CB1 cannabinoid receptors in human vascular endothelial cells. The Biochem J 2000; 346 Pt 3: 835-40. http://dx.doi.org/10.1042/bj3460835

Batkai S, Pacher P, Osei-Hyiaman D, et al. Endocannabinoids acting at cannabinoid-1 receptors regulate cardiovascular function in hypertension. Circulation 2004; 110(14): 1996-2002. http://dx.doi.org/10.1161/01.CIR.0000143230.23252.D2

Cota D, Marsicano G, Tschop M, et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 2003; 112(3): 423-31. http://dx.doi.org/10.1172/JCI17725

Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev 2006; 27(1): 73-100. http://dx.doi.org/10.1210/er.2005-0009

Osei-Hyiaman D, DePetrillo M, Pacher P, et al. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Invest 2005; 115(5): 1298-305. http://dx.doi.org/10.1172/JCI200523057

Van Sickle MD, Duncan M, Kingsley PJ, et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 2005; 310(5746): 329-32. http://dx.doi.org/10.1126/science.1115740

Roche R, Hoareau L, Bes-Houtmann S, et al. Presence of the cannabinoid receptors, CB1 and CB2, in human omental and subcutaneous adipocytes. Histochem Cell Biol 2006; 126(2): 177-87. http://dx.doi.org/10.1007/s00418-005-0127-4

Juan-Pico P, Fuentes E, Bermudez-Silva FJ, et al. Cannabinoid receptors regulate Ca(2+) signals and insulin secretion in pancreatic beta-cell. Cell Calcium 2006; 39(2): 155-62. http://dx.doi.org/10.1016/j.ceca.2005.10.005

Rajesh M, Mukhopadhyay P, Batkai S, et al. CB2-receptor stimulation attenuates TNF-alpha-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyte-endothelial adhesion. Am J Physiol Heart Circ Physiol 2007; 293(4): H2210-8. http://dx.doi.org/10.1152/ajpheart.00688.2007

Rajesh M, Pan H, Mukhopadhyay P, et al. Cannabinoid-2 receptor agonist HU-308 protects against hepatic ischemia/reperfusion injury by attenuating oxidative stress, inflammatory response, and apoptosis. J Leukoc Biol 2007; 82(6): 1382-9. http://dx.doi.org/10.1189/jlb.0307180

Blazquez C, Casanova ML, Planas A, et al. Inhibition of tumor angiogenesis by cannabinoids. Faseb J 2003; 17(3): 529-31. http://dx.doi.org/10.1096/fj.02-0795fje

Batkai S, Mukhopadhyay P, Horvath B, et al. Delta(8) -Tetrahydrocannabivarin prevents hepatic ischaemia/ reperfusion injury by decreasing oxidative stress and inflammatory responses through cannabinoid CB2 receptors. Br J Pharmacol. 2012; 165(8): 2450-61. http://dx.doi.org/10.1111/j.1476-5381.2011.01410.x

Defer N, Wan J, Souktani R, et al. The cannabinoid receptor type 2 promotes cardiac myocyte and fibroblast survival and protects against ischemia/reperfusion-induced cardiomyo-pathy. Faseb J 2009; 23(7): 2120-30. http://dx.doi.org/10.1096/fj.09-129478

Wright KL, Duncan M, Sharkey KA. Cannabinoid CB2 receptors in the gastrointestinal tract: a regulatory system in states of inflammation. Br JPharmacol 2008; 153(2): 263-70. http://dx.doi.org/10.1038/sj.bjp.0707486

Montecucco F, Matias I, Lenglet S, et al. Regulation and possible role of endocannabinoids and related mediators in hypercholesterolemic mice with atherosclerosis. Atherosclerosis 2009; 205(2): 433-41. http://dx.doi.org/10.1016/j.atherosclerosis.2008.12.040

Willecke F, Zeschky K, Ortiz Rodriguez A, et al. Cannabinoid receptor 2 signaling does not modulate atherogenesis in mice. PloS one 2011; 6(4): e19405. http://dx.doi.org/10.1371/journal.pone.0019405

Liu J, Thewke DP, Su YR, Linton MF, Fazio S, Sinensky MS. Reduced macrophage apoptosis is associated with accelerated atherosclerosis in low-density lipoprotein receptor-null mice. Arterioscler Thromb Vasc Biol 2005; 25(1): 174-9.

Daugherty A, Rateri DL. Development of experimental designs for atherosclerosis studies in mice. Methods 2005; 36(2): 129-38. http://dx.doi.org/10.1016/j.ymeth.2004.11.008

Dol-Gleizes F, Paumelle R, Visentin V, et al. Rimonabant, a selective cannabinoid CB1 receptor antagonist, inhibits atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 2009; 29(1): 12-8. http://dx.doi.org/10.1161/ATVBAHA.108.168757

Despres JP, Golay A, Sjostrom L. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med. 2005; 353(20): 2121-34. http://dx.doi.org/10.1056/NEJMoa044537

Van Gaal LF, Rissanen AM, Scheen AJ, Ziegler O, Rossner S. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 2005; 365(9468): 1389-97. http://dx.doi.org/10.1016/S0140-6736(05)66374-X

Pi-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J. Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 2006; 295(7): 761-75. http://dx.doi.org/10.1001/jama.295.7.761

Scheen AJ, Van Gaal LG, Despres JP, Pi-Sunyer X, Golay A, Hanotin C. [Rimonabant improves cardiometabolic risk profile in obese or overweight subjects: overview of RIO studies]. Rev Med Suisse 2006; 2(76): 1916-23.

Martini L, Waldhoer M, Pusch M, et al. Ligand-induced down-regulation of the cannabinoid 1 receptor is mediated by the G-protein-coupled receptor-associated sorting protein GASP1. FASEB J 2007; 21(3): 802-11. http://dx.doi.org/10.1096/fj.06-7132com

Blair RE, Deshpande LS, Sombati S, Elphick MR, Martin BR, DeLorenzo RJ. Prolonged exposure to WIN55,212-2 causes downregulation of the CB1 receptor and the development of tolerance to its anticonvulsant effects in the hippocampal neuronal culture model of acquired epilepsy. Neuropharmacology 2009; 57(3): 208-18. http://dx.doi.org/10.1016/j.neuropharm.2009.06.007

Sim-Selley LJ. Regulation of cannabinoid CB1 receptors in the central nervous system by chronic cannabinoids. Crit Rev Neurobiol 2003; 15(2): 91-119. http://dx.doi.org/10.1615/CritRevNeurobiol.v15.i2.10

Sun Y, Alexander SP, Garle MJ, et al. Cannabinoid activation of PPAR alpha; a novel neuroprotective mechanism. Br J Pharmacol 2007; 152(5): 734-43. http://dx.doi.org/10.1038/sj.bjp.0707478

Srivastava RA. Evaluation of anti-atherosclerotic activities of PPAR-alpha, PPAR-gamma, and LXR agonists in hyperlipidemic atherosclerosis-susceptible F(1)B hamsters. Atherosclerosis 2011; 214(1): 86-93. http://dx.doi.org/10.1016/j.atherosclerosis.2010.10.033

Seimon T, Tabas I. Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J Lipid Res 2009; 50 Suppl: S382-7. http://dx.doi.org/10.1194/jlr.R800032-JLR200

Tabas I. Macrophage apoptosis in atherosclerosis: consequences on plaque progression and the role of endoplasmic reticulum stress. Antioxid Redox Signal 2009; 11(9): 2333-9. http://dx.doi.org/10.1089/ars.2009.2469

Tabas I, Seimon T, Timmins J, Li G, Lim W. Macrophage apoptosis in advanced atherosclerosis. Ann N Y Acad Sci. 2009; 1173 Suppl 1: E40-5. http://dx.doi.org/10.1111/j.1749-6632.2009.04957.x

Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell 2011; 145(3): 341-55. http://dx.doi.org/10.1016/j.cell.2011.04.005

Freeman-Anderson NE, Pickle TG, Netherland CD, Bales A, Buckley NE, Thewke DP. Cannabinoid (CB2) receptor deficiency reduces the susceptibility of macrophages to oxidized LDL/oxysterol-induced apoptosis. J Lipid Res 2008; 49(11): 2338-46. http://dx.doi.org/10.1194/jlr.M800105-JLR200

Alonso-Alconada D, Alvarez FJ, Alvarez A, et al. The cannabinoid receptor agonist WIN 55,212-2 reduces the initial cerebral damage after hypoxic-ischemic injury in fetal lambs. Brain Res 2010; 1362: 150-9. http://dx.doi.org/10.1016/j.brainres.2010.09.050

Alonso-Alconada D, Alvarez A, Alvarez FJ, Martinez-Orgado JA, Hilario E. The cannabinoid WIN 55212-2 mitigates apoptosis and mitochondrial dysfunction after hypoxia ischemia. Neurochem Res. 2012; 37(1): 161-70. http://dx.doi.org/10.1007/s11064-011-0594-z

Krupnick JG, Benovic JL. The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol 1998; 38: 289-319. http://dx.doi.org/10.1146/annurev.pharmtox.38.1.289

Grimsey NL, Goodfellow CE, Dragunow M, Glass M. Cannabinoid receptor 2 undergoes Rab5-mediated internalization and recycles via a Rab11-dependent pathway. Biochim Biophys Acta 2011; 1813(8): 1554-60. http://dx.doi.org/10.1016/j.bbamcr.2011.05.010

Rajesh M, Mukhopadhyay P, Hasko G, Huffman JW, Mackie K, Pacher P. CB2 cannabinoid receptor agonists attenuate TNF-alpha-induced human vascular smooth muscle cell proliferation and migration. Br J Pharmacol 2008; 153(2): 347-57. http://dx.doi.org/10.1038/sj.bjp.0707569

O'Sullivan SE, Kendall DA. Cannabinoid activation of peroxisome proliferator-activated receptors: potential for modulation of inflammatory disease. Immunobiology 2010; 215(8): 611-6. http://dx.doi.org/10.1016/j.imbio.2009.09.007

Goetze S, Xi XP, Kawano H, et al. PPAR gamma-ligands inhibit migration mediated by multiple chemoattractants in vascular smooth muscle cells. J Cardiovasc Pharmacol 1999; 33(5): 798-806. http://dx.doi.org/10.1097/00005344-199905000-00018

Little PJ, Ballinger ML, Survase S, et al. Phosphorylated troglitazone activates PPARgamma and inhibits vascular smooth muscle cell proliferation and proteoglycan synthesis. J Cardiovasc Pharmacol 2008; 51(3): 274-9. http://dx.doi.org/10.1097/FJC.0b013e3181626ce7

Montecucco F, Di Marzo V, da Silva RF, et al. The activation of the cannabinoid receptor type 2 reduces neutrophilic protease-mediated vulnerability in atherosclerotic plaques. Eur Heart J 2012; 33(7): 846-56. http://dx.doi.org/10.1093/eurheartj/ehr449

Downloads

Published

2015-12-03

Issue

Section

Articles