Cardiovascular Risk Factors from Early Life Predict Future Adult Cardiac Structural and Functional Abnormalities: A Systematic Review of the Published Literature
DOI:
https://doi.org/10.12970/2311-052X.2014.02.02.4Keywords:
Life course Cardiology, echocardiography, blood pressure, glucose, body mass index.Abstract
Background: Clinical practice evaluates cardiovascular risk based on current risk factor (RF) levels [Blood pressure (BP), body mass index (BMI) and glycaemic control] largely disregarding previous risk-factor history over the totality of the life course. RFs are related to contemporaneous echocardiographic measures of cardiac structure and function which in turn are independently related to cardiovascular morbidity and mortality in cross-sectional studies. However, the effect of lifetime or earlier RF history on future echocardiographic changes has never been systematically examined.
Methods: A systematic review of the published literature identified 24 studies relating either earlier BP, BMI, glycaemic control or a combination to future cardiac structure and/or function.
Results: The majority of studies showed that elevated BP and BMI in earlier life and greater cumulative burden of these factors resulted in worse cardiac structure up to 24 years later. Studies examining glycaemic control as a RF were few, but poorer glycaemic control in young adults was associated with increased future left ventricular mass.
While only 5 papers related RFs to future cardiac function, all RFs were positively associated with worse future diastolic function.
Conclusions: BP, BMI and glycaemic control measures in childhood, adolescence and early adulthood and subsequent longitudinal trajectories of BP and BMI are predictive of future abnormalities in cardiac structure and function. Lifetime RF history should be used to inform clinical practice. Further research is required to enable the identification of any sensitive periods in the life course to enable prevention when it is most likely to be effective.
References
Danaei G, Ding EL, Mozaffarian D, Taylor B, Rehm J, Murray CJ, Ezzati M. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med 2009; 6: e1000058. http://dx.doi.org/10.1371/journal.pmed.1000058
Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990; 322: 1561-6. http://dx.doi.org/10.1056/NEJM199005313222203
Hammond IW, Devereux RB, Alderman MH, Laragh JH. Relation of blood pressure and body build to left ventricular mass in normotensive and hypertensive employed adults. J Am Coll Cardiol 1988; 12: 996-1004. http://dx.doi.org/10.1016/0735-1097(88)90467-6
Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med 1991; 114: 345-52. http://dx.doi.org/10.7326/0003-4819-114-5-345
Natarajan S, Liao Y, Cao G, Lipsitz SR, McGee DL. Sex differences in risk for coronary heart disease mortality associated with diabetes and established coronary heart disease. Arch Intern Med 2003; 163: 1735-40. http://dx.doi.org/10.1001/archinte.163.14.1735
Fox CS, Sullivan L, D'Agostino RB, Sr., Wilson PW. The significant effect of diabetes duration on coronary heart disease mortality: the Framingham Heart Study. Diabetes Care 2004; 27: 704-8. http://dx.doi.org/10.2337/diacare.27.3.704
Kuh D, Ben-Shlomo Y. A life course approach to chronic disease epidemiology. Oxford University Press; 2004. http://dx.doi.org/10.1093/acprof:oso/9780198578154.001.0001
Barker DJ. Fetal origins of coronary heart disease. BMJ 1995; 311: 171-4. http://dx.doi.org/10.1136/bmj.311.6998.171
Gluckman PD, Bergstrom CT. Evolutionary biology within medicine: a perspective of growing value. BMJ 2011; 343: d7671.
Brown MJ, Cruickshank JK, Macdonald TM. Navigating the shoals in hypertension: discovery and guidance. BMJ 2012; 344: d8218.
Gray L, Lee IM, Sesso HD, Batty GD. Blood pressure in early adulthood, hypertension in middle age, and future cardiovascular disease mortality: HAHS (Harvard Alumni Health Study). J Am Coll Cardiol 2011; 58: 2396-403. http://dx.doi.org/10.1016/j.jacc.2011.07.045
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 2009; 62: 1006-12. http://dx.doi.org/10.1016/j.jclinepi.2009.06.005
Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000; 283: 2008-12. http://dx.doi.org/10.1001/jama.283.15.2008
Johnson GL, Kotchen JM, McKean HE, Cottrill CM, Kotchen TA. Blood pressure related echocardiographic changes in adolescents and young adults. Am Heart J 1983; 105: 113-8. http://dx.doi.org/10.1016/0002-8703(83)90287-9
Kumaran K, Fall CH, Martyn CN, Vijayakumar M, Stein C, Shier R. Blood pressure, arterial compliance, and left ventricular mass: no relation to small size at birth in south Indian adults. Heart 2000; 83: 272-7. http://dx.doi.org/10.1136/heart.83.3.272
Toprak A, Wang H, Chen W, Paul T, Srinivasan S, Berenson G. Relation of childhood risk factors to left ventricular hypertrophy (eccentric or concentric) in relatively young adulthood (from the Bogalusa Heart Study). Am J Cardiol 2008; 101: 1621-5. http://dx.doi.org/10.1016/j.amjcard.2008.01.045
Vijayakumar M, Fall CH, Osmond C, Barker DJ. Birth weight, weight at one year, and left ventricular mass in adult life. Br Heart J 1995; 73: 363-7. http://dx.doi.org/10.1136/hrt.73.4.363
Strand AH, Gudmundsdottir H, Os I, et al. Arterial plasma noradrenaline predicts left ventricular mass independently of blood pressure and body build in men who develop hypertension over 20 years. J Hypertens 2006; 24: 905-13. http://dx.doi.org/10.1097/01.hjh.0000222761.07477.7b
Arnlov J, Lind L, Zethelius B, et al. Several factors associated with the insulin resistance syndrome are predictors of left ventricular systolic dysfunction in a male population after 20 years of follow-up. Am Heart J 2001; 142: 720-4. http://dx.doi.org/10.1067/mhj.2001.116957
Arnlov J, Lind L, Sundstrom J, Andren B, Vessby B, Lithell H. Insulin resistance, dietary fat intake and blood pressure predict left ventricular diastolic function 20 years later. Nutr Metab Cardiovasc Dis 2005; 15: 242-9. http://dx.doi.org/10.1016/j.numecd.2004.10.002
Bjorklund K, Lind L, Vessby B, Andren B, Lithell H. Different metabolic predictors of white-coat and sustained hypertension over a 20-year follow-up period: a population-based study of elderly men. Circulation 2002; 106: 63-8. http://dx.doi.org/10.1161/01.CIR.0000019737.87850.5A
Jokiniitty JM, Majahalme SK, Kahonen MA, Tuomisto MT, Turjanmaa VM. Pulse pressure is the best predictor of future left ventricular mass and change in left ventricular mass: 10 years of follow-up. J Hypertens 2001; 19: 2047-54. http://dx.doi.org/10.1097/00004872-200111000-00016
Ridderstrale W, Saluveer O, Johansson MC, Bergbrant A, Jern S, Hrafnkelsdottir TJ. Consistency of blood pressure and impact on cardiovascular structure over 20 years in young men. J Intern Med 2010; 267: 295-304. http://dx.doi.org/10.1111/j.1365-2796.2009.02142.x
Sundstrom J, Lind L, Vessby B, Andren B, Aro A, Lithell H. Dyslipidemia and an unfavorable fatty acid profile predict left ventricular hypertrophy 20 years later. Circulation 2001; 103: 836-41. http://dx.doi.org/10.1161/01.CIR.103.6.836
Zureik M, Bonithon-Kopp C, Diebold B, Ducimetiere P, Guize L. Combined effects of blood pressure and body mass index on left ventricular structure in middle-aged males: cross-sectional and 2-year longitudinal results. J Hypertens 1995; 13: 979-85. http://dx.doi.org/10.1097/00004872-199509000-00007
Gardin JM, Brunner D, Schreiner PJ, et al. Demographics and correlates of five-year change in echocardiographic left ventricular mass in young black and white adult men and women: the Coronary Artery Risk Development in Young Adults (CARDIA) study. J Am Coll Cardiol 2002; 40: 529-35. http://dx.doi.org/10.1016/S0735-1097(02)01973-3
Haji SA, Ulusoy RE, Patel DA, et al. Predictors of left ventricular dilatation in young adults (from the Bogalusa Heart Study). Am J Cardiol 2006; 98: 1234-7. http://dx.doi.org/10.1016/j.amjcard.2006.05.054
Lin TH, Chiu HC, Su HM, et al. Association between fasting plasma glucose and left ventricular mass and left ventricular hypertrophy over 4 years in a healthy population aged 60 and older. J Am Geriatr Soc 2007; 55: 717-24. http://dx.doi.org/10.1111/j.1532-5415.2007.01134.x
Urbina EM, Gidding SS, Bao W, Pickoff AS, Berdusis K, Berenson GS. Effect of body size, ponderosity, and blood pressure on left ventricular growth in children and young adults in the Bogalusa Heart Study. Circulation 1995; 91: 2400-6. http://dx.doi.org/10.1161/01.CIR.91.9.2400
Li X, Li S, Ulusoy E, Chen W, Srinivasan SR, Berenson GS. Childhood adiposity as a predictor of cardiac mass in adulthood: the Bogalusa Heart Study. Circulation 2004; 110: 3488-92. http://dx.doi.org/10.1161/01.CIR.0000149713.48317.27
Lorber R, Gidding SS, Daviglus ML, Colangelo LA, Liu K, Gardin JM. Influence of systolic blood pressure and body mass index on left ventricular structure in healthy African-American and white young adults: the CARDIA study. J Am Coll Cardiol 2003; 41: 955-60. http://dx.doi.org/10.1016/S0735-1097(03)00052-4
Cheng S, Xanthakis V, Sullivan LM, et al. Correlates of echocardiographic indices of cardiac remodeling over the adult life course: longitudinal observations from the Framingham Heart Study. Circulation 2010; 122: 570-8. http://dx.doi.org/10.1161/CIRCULATIONAHA.110.937821
Lam CS, Xanthakis V, Sullivan LM, et al. Aortic root remodeling over the adult life course: longitudinal data from the Framingham Heart Study. Circulation 2010; 122: 884-90. http://dx.doi.org/10.1161/CIRCULATIONAHA.110.937839
Lieb W, Xanthakis V, Sullivan LM, et al. Longitudinal tracking of left ventricular mass over the adult life course: clinical correlates of short- and long-term change in the framingham offspring study. Circulation 2009; 119: 3085-92. http://dx.doi.org/10.1161/CIRCULATIONAHA.108.824243
McManus DD, Xanthakis V, Sullivan LM, et al. Longitudinal tracking of left atrial diameter over the adult life course: Clinical correlates in the community. Circulation 2010; 121: 667-74. http://dx.doi.org/10.1161/CIRCULATIONAHA.109.885806
Wilsgaard T, Jacobsen BK, Schirmer H, et al. Tracking of cardiovascular risk factors: the Tromso study, 1979-1995. Am J Epidemiol 2001; 154: 418-26. http://dx.doi.org/10.1093/aje/154.5.418
Vasan RS, Larson MG, Levy D. Determinants of echocardiographic aortic root size. The Framingham Heart Study. Circulation 1995; 91: 734-40. http://dx.doi.org/10.1161/01.CIR.91.3.734
de Simone G, Devereux RB, Chinali M, et al. Left ventricular mass and incident hypertension in individuals with initial optimal blood pressure: the Strong Heart Study. J Hypertens 2008; 26: 1868-74. http://dx.doi.org/10.1097/HJH.0b013e3283050899
Post WS, Larson MG, Levy D. Impact of left ventricular structure on the incidence of hypertension. The Framingham Heart Study. Circulation 1994; 90: 179-85. http://dx.doi.org/10.1161/01.CIR.90.1.179
Grossman C, Grossman A, Koren-Morag N, Azaria B, Goldstein L, Grossman E. Interventricular septum thickness predicts future systolic hypertension in young healthy pilots. Hypertens Res 2008; 31: 15-20. http://dx.doi.org/10.1291/hypres.31.15
Sesso HD, Stampfer MJ, Rosner B, et al. Systolic and diastolic blood pressure, pulse pressure, and mean arterial pressure as predictors of cardiovascular disease risk in Men. Hypertension 2000; 36: 801-7. http://dx.doi.org/10.1161/01.HYP.36.5.801
Pastor-Barriuso R, Banegas JR, Damian J, Appel LJ, Guallar E. Systolic blood pressure, diastolic blood pressure, and pulse pressure: an evaluation of their joint effect on mortality. Ann Intern Med 2003; 139: 731-9. http://dx.doi.org/10.7326/0003-4819-139-9-200311040-00007
Li S, Chen W, Srinivasan SR, Berenson GS. Childhood blood pressure as a predictor of arterial stiffness in young adults: the bogalusa heart study. Hypertension 2004; 43: 541-6. http://dx.doi.org/10.1161/01.HYP.0000115922.98155.23
Lauer MS, Anderson KM, Levy D. Influence of contemporary versus 30-year blood pressure levels on left ventricular mass and geometry: the Framingham Heart Study. J Am Coll Cardiol 1991; 18: 1287-94. http://dx.doi.org/10.1016/0735-1097(91)90549-O
De Stavola BL, Nitsch D, dos Santos Silva I, et al. Statistical issues in life course epidemiology. Am J Epidemiol 2006; 163: 84-96. http://dx.doi.org/10.1093/aje/kwj003
Mishra G, Nitsch D, Black S, De Stavola B, Kuh D, Hardy R. A structured approach to modelling the effects of binary exposure variables over the life course. Int J Epidemiol 2009; 38: 528-37. http://dx.doi.org/10.1093/ije/dyn229
Wills AK, Hardy RJ, Black S, Kuh DJ. Trajectories of overweight and body mass index in adulthood and blood pressure at age 53: the 1946 British birth cohort study. J Hypertens 2010; 28: 679-86. http://dx.doi.org/10.1097/HJH.0b013e328335de7b
Lawrence-Wright MB, Boyne MS, Osmond C, et al. The effect of feto-maternal size and childhood growth on left ventricular mass and arterial stiffness in Afro-Caribbean children. J Hum Hypertens 2011; 25: 457-64. http://dx.doi.org/10.1038/jhh.2010.84
Daniels SR, Kimball TR, Morrison JA, Khoury P, Witt S, Meyer RA. Effect of lean body mass, fat mass, blood pressure, and sexual maturation on left ventricular mass in children and adolescents. Statistical, biological, and clinical significance. Circulation 1995; 92: 3249-54. http://dx.doi.org/10.1161/01.CIR.92.11.3249
Dai S, Harrist RB, Rosenthal GL, Labarthe DR. Effects of body size and body fatness on left ventricular mass in children and adolescents: Project HeartBeat! Am J Prev Med 2009; 37(Suppl): S97-104.