Ischemic Preconditioning Attenuates Myocardial Apoptosis through Regulation of Hypoxia Inducible Factor-1αand Heat Shock Protein 70

Authors

  • Yun-Wen Peng Department of Pediatrics & Communicable Diseases, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-4204, USA
  • Catherine Pawloski Department of Pediatrics & Communicable Diseases, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-4204, USA
  • Ian M. Charpie Department of Pediatrics & Communicable Diseases, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-4204, USA
  • John R. Charpie Department of Pediatrics & Communicable Diseases, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-4204, USA

DOI:

https://doi.org/10.12970/2311-052X.2014.02.02.3

Keywords:

 Ischemic preconditioning, hypoxia reoxygenation, H9c2 cells, transcription factor, cardioprotection.

Abstract

Ischemic preconditioning (IPC) increases expression of several cardioprotective genes and attenuates myocardial dysfunction after ischemia-reperfusion (IR) injury. However, the precise cellular mechanisms by which IPC confers myocardial protection are incompletely understood. We hypothesized that the beneficial effect of IPC in the heart is due to upregulation of two key transcription factors, Hypoxia Inducible Factor-1α (HIF-1α) and Heat Shock Protein 70 (HSP70). In this study, neonatal rat cardiomyoblasts (H9c2 cells) were subjected to IPC (four cycles of 15-min hypoxia/15-min reoxygenation), followed by 12-hr hypoxia-reoxygenation (HR). HIF-1α and HSP70 expression were measured by ELISA and immunoblot. Apoptosis was assessed by DNA fragmentation and caspase-3 activity. The results showed that IPC induced HIF-1α and HSP70 expression and attenuated apoptosis after 12-hr HR. Pretreatment with DMOG, an HIF-1α activator, showed a similar protective effect as IPC. An HIF-1α inhibitor (CAY10585) or HSP70 inhibitor (KNK437) decreased IPC-induced HIF-1α or HSP70 expression, respectively, and abrogated the anti-apoptotic effect of IPC. In summary, IPC is associated with increased HIF-1α and HSP70 expression and a subsequent decreased apoptosis in neonatal cardiomyoblasts exposed to HR. These results suggest that HIF-1α and HSP70play important roles in IPC-induced cardioprotection, and these endogenous transcription factors may provide a novel therapeutic target to prevent myocardial IR injury in vivo.

References

Thiemermann C, Bowes J, Myint FP, Vane JR. Inhibition of the activity of poly (ADP ribose) synthetase reduced ischemia- reperfusion injury in the heart and skeletal muscle. Proc Natl Acad Sci 1997; 94: 679-83. http://dx.doi.org/10.1073/pnas.94.2.679

Downey JM, Davis AM, Cohen MV. Signaling pathways in ischemic preconditioning. Heart Fail Rev 2007; 12(: 181-8.

Albers EL, Bichell DP, Mclaughlin B. New approaches to neuroprotection in infant heart surgery. Pediatr Res2010; 68: 1-9. http://dx.doi.org/10.1203/PDR.0b013e3181df5402

Das M, Das DK. Molecular mechanism of preconditioning. IUBMB Life 2008; 60: 199-203. http://dx.doi.org/10.1002/iub.31

Muller AL, Dhalla NS. Mechanisms of the beneficial actions of ischemic preconditioning on subcellular remodeling in ischemic-reperfused heart.Curr Cardiol Rev 2010; 6: 255-64. http://dx.doi.org/10.2174/157340310793566118

Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 2000; 88: 1474-80.

Ivan M, Kondo K, Yang H, et al. HIF alpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001; 292: 464-8. http://dx.doi.org/10.1126/science.1059817

Latchman DS. Heat shock proteins and cardiac protection. Cardiovas Res 2001; 51: 637-46. http://dx.doi.org/10.1016/S0008-6363(01)00354-6

Plumier JC, Ross BM, Currie RW, et al. Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery. J Clin Invest 1995; 95: 1854-60. http://dx.doi.org/10.1172/JCI117865

Kampinga HH, Craig EA. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nature 2010; 11: 579-92.

Chong K, Lai C, Lille S, Chang C, Su C. Stable overexpression of the constitutive form of heart shock protein 70 confers oxidative protection. J Mol Cell Cardiol 1998; 30: 599-608. http://dx.doi.org/10.1006/jmcc.1997.0623

Bruick R, Mcknight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001; 294: 1337-40. http://dx.doi.org/10.1126/science.1066373

Lee K, Lee JH, Boovanahalli SK, et al. (Aryloxyacetylamino) benzoic acid analogues: A new class of hypoxia-inducible factor-1 inhibitors. J Med Chem 2007; 50: 1675-84. http://dx.doi.org/10.1021/jm0610292

Manwell LA, Heikkila JJ. Examination of KNK437- and quercetin-mediated inhibition of heat shock-induced heat shock protein gene expression in xenopuslaevis cultured cells. Comp Biochem Physiol 2007; 148: 521-30. http://dx.doi.org/10.1016/j.cbpa.2007.06.422

Peng YW, Buller CL, Charpie JR. Impact of N-acetylcysteine on neonatal cardiomyocyte ischemia-reperfusion injury. Pediatr Res 2011; 70: 61-6. http://dx.doi.org/10.1203/PDR.0b013e31821b1a92

Majmundar AJ, Wong WJ, Simon MC. Hypoxia inducible factors and the response to hypoxic stress. Mol Cell 2010; 40: 294-309. http://dx.doi.org/10.1016/j.molcel.2010.09.022

Stangl K, Gunther C, Frank T, et al. Inhibition of the Ubiquitin-proteasome pathway induces differential heat-shock protein response in cardiomyocytes and renders early cardiac protection. Biochem Biophys Res Commun 2002; 291: 542-9. http://dx.doi.org/10.1006/bbrc.2002.6476

Horowitz M, Assadi H. Heat acclimation-mediated cross-tolerance in cardioprotection. Ann N Y Acad Sci 2010; 1188: 199-206. http://dx.doi.org/10.1111/j.1749-6632.2009.05101.x

Chi NC, Karliner JS. Molecular determinants of responses to myocardial ischemia/reperfusion injury: focus on hypoxia-inducible and heat shock factors. Cardiovas Res 2004; 61: 437-47. http://dx.doi.org/10.1016/j.cardiores.2003.11.033

Depre C, Kim S, John AS, et al. Program of cell survival underlying human and experimental hibernating myocardium. Circ Res 2004; 95: 433-40. http://dx.doi.org/10.1161/01.RES.0000138301.42713.18

Minamino T. Cardioprotection from ischemia/reperfusion injury. Circ J 2012; 76: 1074-82. http://dx.doi.org/10.1253/circj.CJ-12-0132

Greijer AE, Wall E van der. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Path 2004; 57: 1009-14. http://dx.doi.org/10.1136/jcp.2003.015032

Date T, Mochizuki S, Belanger AJ, et al. Expression of constitutively stable hybrid hypoxia-inducible factor-1α protects cultured rat cardiomyocytes against simulated ischemia-reperfusion injury. Am J Physiol Cell Physiol 2005; 288: C314-20. http://dx.doi.org/10.1152/ajpcell.00374.2004

Eckle T, Köhler D, Lehmann R, El Kasmi KC, Hoger HK. Hypoxia-inducible factor-1 is central to cardioprotection: A new paradigm for ischemic preconditioning. Circulation 2008; 118: 166-75. http://dx.doi.org/10.1161/CIRCULATIONAHA.107.758516

Cai Z, Zhong H, Bosch-Marce M, et a. Complete loss of ischemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1α. Cardio Res 2008; 77: 463-70. http://dx.doi.org/10.1093/cvr/cvm035

Cadenas S, Aragones J, Landazuri MO. Mitochondrial reprogramming through cardiac oxygen sensors in ischemic heart disease. Cardiovasc Res 2010; 88: 219-28. http://dx.doi.org/10.1093/cvr/cvq256

Krishnan J, Ahuja P, Bodenmann S, et al. Essential role of developmentally activated hypoxia-inducible factor 1α for cardiac morphogenesis and function. Circ Res 2008; 103: 1139-46. http://dx.doi.org/10.1161/01.RES.0000338613.89841.c1

Wikenheiser J, Wolfram JA, Gargesha M, et al. Altered hypoxia-inducible factor-1 alpha expression levels correlate with coronary vessel anomalies. Dev Dyn 2009; 238: 2688-700. http://dx.doi.org/10.1002/dvdy.22089

Zolk O, Solbach TF, Eschenhagen T, Weidemnaa A, Fromm MF. Activation of negative regulators of the hypoxia-inducible factor (HIF) pathway in human end-stage heart failure. Biochem Biophys Res Commun 2008; 376: 315-20. http://dx.doi.org/10.1016/j.bbrc.2008.08.152

Miyata T, Takizawa S, de Strihou C. Hypoxia. 1. Intracellular sensors for oxygen and oxidative stress: novel therapeutic targets. Am J Physiol Cell Physiol 2011; 300: C226-31. http://dx.doi.org/10.1152/ajpcell.00430.2010

Henderson B, Pockley AG. Proteotoxic stress and circulating cell stress proteins in the cardiovascular diseases. Cell Stress Chaperones 2012; 17: 303-11. http://dx.doi.org/10.1007/s12192-011-0318-y

Koeppen M, Eckle T, Eltzschig HK. The hypoxia-inflammation link and potential drug targets. Curr Opin Anaesthesiol 2011; 24: 363-9. http://dx.doi.org/10.1097/ACO.0b013e32834873fd

Williamson CL, Dabkowski ER, Dillmann WH, Hollander JM. Mitochondria protection from hypoxia/reoxygenation injury with mitochondria heat shock protein 70 overexpression. Am J Physiol Heart Circ Physiol 2008; 294: H249-56. http://dx.doi.org/10.1152/ajpheart.00775.2007

Mayer MP, Bukau B. Hsp70 chaperones: Cellular functions and molecular mechanism. CMLS. Cell Mol Life Sci 2005; 62: 670-84. http://dx.doi.org/10.1007/s00018-004-4464-6

Patury S, Miyata Y, Gestwicki JE. Pharmacological targeting of the Hsp70 chaperone. Curr Top Med Chem 2009; 9: 1337-51. http://dx.doi.org/10.2174/156802609789895674

Yavuz S, Kasap M, Parlar H, et al. Heat shock proteins and myocardial protection during cardiopulmonary bypass. J Int Med Res 2011; 39: 499-507. http://dx.doi.org/10.1177/147323001103900217

Meijering RA, Zhang D, Hoogstra-Berends F, Henning RH, Brundel BJJM. Loss of proteostatic control as a substrate for atrial fibrillation: a novel target for upstream therapy by heat shock proteins. Front Physiol 2012; 3: 1-11. http://dx.doi.org/10.3389/fphys.2012.00036

Downloads

Published

2014-07-05

Issue

Section

Articles