Assessment of Vascular Response after Stent Implantation by Intracoronary Optical Coherence Tomography

Authors

  • Yasushi Ino Wakayama Medical University, 811-1 Kimiidera, Wakayama, Japan
  • Takashi Kubo Wakayama Medical University, 811-1 Kimiidera, Wakayama, Japan
  • Yoshiki Matsuo Wakayama Medical University, 811-1 Kimiidera, Wakayama, Japan
  • Hironori Kitabata Wakayama Medical University, 811-1 Kimiidera, Wakayama, Japan
  • Takeyoshi Kameyama Wakayama Medical University, 811-1 Kimiidera, Wakayama, Japan
  • Atsushi Tanaka Wakayama Medical University, 811-1 Kimiidera, Wakayama, Japan
  • Takashi Akasaka Wakayama Medical University, 811-1 Kimiidera, Wakayama, Japan

DOI:

https://doi.org/10.12970/2311-052X.2016.04.01.5

Keywords:

Acute anterior STEMI, primary coronary angioplasty, left ventricular systolic function, Doppler echocardiography, coronary artery flow.

Abstract

Optical coherence tomography (OCT) is a high resolution (10-20 μm) imaging modality that provides microscopic visualization of the coronary artery including vascular response after stent implantation. Compared to conventional intravascular ultrasound, OCT can more clearly identify findings immediately after stent implantation, such as tissue protrusion, stent edge dissection, and incomplete stent strut apposition. Furthermore, OCT allows clinicians to accurately assess the late acquired stent malapposition and strut coverage which could be a surrogate marker for stent thrombosis after drug-eluting stent (DES) implantation. OCT can evaluate not only the extent and amount of neointima but also the tissue characteristics of neointimal hyperplasia. Morphological OCT evaluation of restenosis tissue may offer important information about treatment strategies for in-stent restenosis lesion as well as the acute/mid-term clinical outcome after percutaneous coronary intervention. In addition, in-stent neoatherosclerosis, which are associated with very late stent failure, including stent thrombosis and restenosis, frequently has the following OCT findings; lipid-rich neointima, microvascular proliferation, and neointimal disruption. Thus, the high resolution imaging of OCT has provided important insights into the vascular response immediately and late after stent implantation.

References

Yabushita H, Bouma BE, Houser SL, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation 2002; 106: 1640-1645. http://dx.doi.org/10.1161/01.CIR.0000029927.92825.F6

Kubo T, Imanishi T, Takarada S, et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol 2007; 50: 933-939. http://dx.doi.org/10.1016/j.jacc.2007.04.082

Lowe HC, Narula J, Fujimoto JG, Jang IK. Intracoronary optical diagnostics current status, limitations, and potential. J Am Coll Cardiol Interv 2011; 4: 1257-1270. http://dx.doi.org/10.1016/j.jcin.2011.08.015

Kubo T, Imanishi T, Takarada S, et al. Comparison of vascular response after sirolimus-eluting stent implantation between unstable angina pectoris and stable angina pectoris: a serial optical coherence tomography study. J Am Coll Cardiol Img 2008; 1: 475-484. http://dx.doi.org/10.1016/j.jcmg.2008.03.012

Takano M, Yamamoto M, Mizuno M, et al. Late vascular responses from 2 to 4 years after implantation of sirolimuseluting stents: serial observations by intracoronary optical coherence tomography. Circ Cardiovasc Interv 2010; 3: 476- 483. http://dx.doi.org/10.1161/CIRCINTERVENTIONS.110.957118

Takarada S, Imanishi T, Liu Y, et al. Advantage of nextgeneration frequency-domain optical coherence tomography compared with conventional time-domain system in the assessment of coronary lesion. Catheter Cardiovasc Interv 2010; 75: 202-206. http://dx.doi.org/10.1002/ccd.22273

Okamura T, Gonzalo N, Gutiérrez-Chico JL, et al. Reproducibility of coronary Fourier domain optical coherence tomography: quantitative analysis of in vivo stented coronary arteries using three different software packages. EuroIntervention 2010; 6; 371-379. http://dx.doi.org/10.4244/EIJV6I1A62

Ozaki Y, Kitabata H, Tsujioka H, et al. Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography. Circ J 2012; 76: 922-927. http://dx.doi.org/10.1253/circj.CJ-11-1122

Liu Y, Shimamura K, Kubo T, et al. Comparison of longitudinal geometric measurement in human coronary arteries between frequency-domain optical coherence tomography and intravascular ultrasound. Int J Cardiovasc Imaging 2014; 30: 271-277. http://dx.doi.org/10.1007/s10554-013-0330-7

Orii M, Kubo T, Tanaka A, et al. Inter-scan reproducibility of geometric coronary artery measurements using frequencydomain optical coherence tomography. Int Heart J 2013; 54: 64-67. http://dx.doi.org/10.1536/ihj.54.64

Satogami K, Ino Y, Kubo T, et al. Successful stenting with optical frequency domain imaging guidance for spontaneous coronary artery dissection. J Am Coll Cardiol Interv 2015; 8: e83-85. http://dx.doi.org/10.1016/j.jcin.2014.12.247

Kubo T, Akasaka T, Shite J, et al. OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study. J Am Coll Cardiol Img 2013; 6: 1095-1104. http://dx.doi.org/10.1016/j.jcmg.2013.04.014

Gonzalo N, Serruys PW, Okamura T, et al. Optical coherence tomography assessment of the acute effects of stent implantation on the native vessel wall: a systematic quantitative approach. Heart 2010; 95: 1913-1919. http://dx.doi.org/10.1136/hrt.2009.172072

Choi SY, Witzenbichler B, Maehara A, et al. Intravascular ultrasound findings of early stent thrombosis after primary percutaneous intervention in acute myocardial infarction: a Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) substudy. Circ Cardiovasc Interv 2011; 4: 239-247. http://dx.doi.org/10.1161/CIRCINTERVENTIONS.110.959791

Kume T, Okura H, Miyamoto Y, et al. Natural history of stent edge dissection, tissue protrusion and incomplete stent apposition detectable only on optical coherence tomography after stent implantation. Circ J 2012; 76: 698-703. http://dx.doi.org/10.1253/circj.CJ-11-0845

Kawamori H, Shite J, Shinke T, et al. Natural consequence of post-intervention stent malapposition, thrombus, tissue prolapse, and dissection assessed by optical coherence tomography at mid-term follow-up. Eur Heart J Cardiovasc Imaging 2013; 14: 865-875. http://dx.doi.org/10.1093/ehjci/jes299

Gonzalo N, Serruys PW, Okamura T, et al. Relation between plaque type and dissections at the edges after stent implantation: An optical coherence tomography study. Int J Cardiol 2011; 150: 151-155. http://dx.doi.org/10.1016/j.ijcard.2010.03.006

Chamié D, Bezerra HG, Attizzani GF, et al. Incidence, predictors, morphological characteristics, and clinical outcomes of stent edge dissections detected by optical coherence tomography. J Am Coll Cardiol Interv 2013; 6: 800-813. http://dx.doi.org/10.1016/j.jcin.2013.03.019

Prati F, Di Vito L, Biondi-Zoccai G, et al. Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lotta contro l'InfartoOptimisation of Percutaneous Coronary Intervention (CLIOPCI) study. EuroIntervention 2012; 8: 823-829. http://dx.doi.org/10.1016/j.jcin.2013.03.019

Bezerra HG, Costa MA, Guagliumi G, Rollins AM, Simon DI. Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. J Am Coll Cardiol Interv 2009; 2: 1035-1046. http://dx.doi.org/10.1016/j.jcin.2009.06.019

Bouma BE, Tearney GJ, Yabushita H, et al. Evaluation of intracoronary stenting by intravascular optical coherence tomography. Heart 2003; 89: 317-320. http://dx.doi.org/10.1136/heart.89.3.317

Shimamura K, Kubo T, Akasaka T, et al. Outcomes of everolimus-eluting stent incomplete stent apposition: a serial optical coherence tomography analysis. Eur Heart J Cardiovasc Imaging 2015; 16: 23-28. http://dx.doi.org/10.1093/ehjci/jeu174

Fujimoto H, Nakamura M, Yokoi H. Impact of calcification on the long-term outcomes of sirolimus-eluting stent implantation: Subanalysis of the Cypher Post-Marketing Surveillance Registry. Circ J 2012; 76: 57-64. http://dx.doi.org/10.1253/circj.CJ-11-0738

Kobayashi Y, Okura H, Kume T, et al. Impact of Target Lesion Coronary Calcification on Stent Expansion. Circ J 2014; 78: 2209-2214. http://dx.doi.org/10.1253/circj.CJ-14-0108

Tanigawa J, Barlis P, Di Mario C. Heavily calcified coronary lesions preclude strut apposition despite high pressure balloon dilatation and rotational atherectomy: in-vivo demonstration with optical coherence tomography. Circ J 2008; 72: 157-160. http://dx.doi.org/10.1253/circj.72.157

Vaquerizo B, Serra A, Miranda F, et al. Aggressive plaque modification with rotational atherectomy and/or cutting balloon before drug-eluting stent implantation for the treatment of calcified coronary lesions. J Interv Cardiol 2010; 23: 240-248. http://dx.doi.org/10.1111/j.1540-8183.2010.00547.x

Furuichi S, Sangiorgi GM, Godino C, et al. Rotational atherectomy followed by drug-eluting stent implantation in calcified coronary lesions. EuroIntervention 2009; 5: 370- 374. http://dx.doi.org/10.4244/V5I3A58

Okura H, Hayase M, Shimodozono S, et al REDUCE Investigators. Restenosis Reduction by Cutting Balloon Evaluation. Mechanisms of acute lumen gain following cutting balloon angioplasty in calcified and noncalcified lesions: An Intravascular Ultrasound Study. Catheter Cardiovasc Interv 2002; 57: 429-436. http://dx.doi.org/10.1002/ccd.10344

Kubo T, Shimamura K, Ino Y, et al. Superficial Calcium Fracture After PCI as Assessed by OCT. J Am Coll Cardiol Img 2015. pii: S1936-878X(15)00027-3.

Daemen J, Wenaweser P, Tsuchida K, et al. Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxeleluting stents in routine clinical practice: data from a large two-institutional cohort study. Lancet 2007; 369: 667-678. http://dx.doi.org/10.1016/S0140-6736(07)60314-6

Kastrati A, Mehilli J, Pache J, et al. Analysis of 14 trials comparing sirolimus-eluting stents with bare-metal stents. N Engl J Med 2007; 356: 1030-1039. http://dx.doi.org/10.1056/NEJMoa067484

Wenaweser P, Daemen J, Zwahlen M, et al. Incidence and correlates of drug-eluting stent thrombosis in routine clinical practice. 4-year results from a large 2-institutional cohort study. J Am Coll Cardiol 2008; 52: 1134-1140. http://dx.doi.org/10.1016/j.jacc.2008.07.006

Kimura T, Morimoto T, Nakagawa Y, et al. for the j-Cypher Registry Investigators. Antiplatelet therapy and stent thrombosis after sirolimus-eluting stent implantation. Circulation 2009; 119: 987-995. http://dx.doi.org/10.1161/CIRCULATIONAHA.108.808311

Honda Y. Drug-eluting stents. Insights from invasive imaging technologies. Circ J 2009; 73: 1371-1380. Review. http://dx.doi.org/10.1253/circj.CJ-09-0377

Finn AV, Joner M, Nakazawa G, et al. Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation 2007; 115: 2435- 2441. http://dx.doi.org/10.1161/CIRCULATIONAHA.107.693739

Suzuki Y, Ikeno F, Koizumi T, et al. In vivo comparison between optical coherence tomography and intravascular ultrasound for detecting small degrees of in-stent neointima after stent implantation. J Am Coll Cardiol Interv 2008; 1: 168-173. http://dx.doi.org/10.1016/j.jcin.2007.12.007

Capodanno D, Prati F, Pawlowsky T, et al. Comparison of optical coherence tomography and intravascular ultrasound for the assessment of in-stent tissue coverage after stent implantation. EuroIntervention 2009; 5: 538-543. http://dx.doi.org/10.4244/EIJV5I5A88

Matsumoto D, Shite J, Shinke T, et al. Neointimal coverage of sirolimus-eluting stents at 6-month follow-up: evaluated by optical coherence tomography. Eur Heart J 2007; 28: 961- 967. http://dx.doi.org/10.1093/eurheartj/ehl413

Murata A, Wallace-Bradley D, Tellez A, et al. Accuracy of optical coherence tomography in the evaluation of neointimal coverage after stent implantation. J Am Coll Cardiol Img 2010; 3: 76-84. http://dx.doi.org/10.1016/j.jcmg.2009.09.018

Chen BX, Ma FY, Luo W, et al. Neointimal coverage of baremetal and sirolimus-eluting stents evaluated with optical coherence tomography. Heart 2008; 94: 566-570. http://dx.doi.org/10.1136/hrt.2007.118679

Kedhi E, Joesoef KS, McFadden E, et al. Second-generation everolimus-eluting and paclitaxel-eluting stents in real-life practice (COMPARE): a randomised trial. Lancet 2010; 375: 201-209. http://dx.doi.org/10.1016/S0140-6736(09)62127-9

Sabate M, Cequier A, Iñiguez A, et al. Everolimus-eluting stent versus bare-metal stent in ST-segment elevation myocardial infarction (EXAMINATION): 1 year results of a randomised controlled trial. Lancet 2012; 380: 1482-1490. http://dx.doi.org/10.1016/S0140-6736(12)61223-9

Kubo T, Akasaka T, Kozuma K, et al. RESET Investigators. Comparison of neointimal coverage between everolimuseluting stents and sirolimus-eluting stents: an optical coherence tomography substudy of the RESET (Randomized Evaluation of Sirolimus-eluting versus Everolimus-eluting stent Trial). EuroIntervention 2015; 11: 564-571. http://dx.doi.org/10.4244/EIJV11I5A109

Nakazawa G, Finn AV, Joner M, et al. Delayed arterial healing and increased late stent thrombosis at culprit sites after drug-eluting stent placement for acute myocardial infarction patients: an autopsy study. Circulation 2008; 118: 1138-1145. http://dx.doi.org/10.1161/CIRCULATIONAHA.107.762047

Finn AV, Nakazawa G, Ladich E, Kolodgie FD, Virmani R. Does underlying plaque morphology play a role in vessel healing after drug eluting stent implantation? J Am Coll Cardiol Img 2008; 1: 485-488. http://dx.doi.org/10.1016/j.jcmg.2008.04.007

Guagliumi G, Costa MA, Sirbu V, et al. Strut coverage and late malapposition with paclitaxel-eluting stents compared with bare metal stents in acute myocardial infarction: optical coherence tomography substudy of the Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) Trial. Circulation 2011; 123: 274-281. http://dx.doi.org/10.1161/CIRCULATIONAHA.110.963181

Ino Y, Kubo T, Tanaka A, et al. Comparison of vascular response between everolimus-eluting stent and bare metal stent implantation in ST-segment elevation myocardial infarction assessed by optical coherence tomography. Eur Heart J Cardiovasc Imaging 2015; 16: 513-520. http://dx.doi.org/10.1093/ehjci/jeu227

Sawada T, Shinke T, Otake H, et al. Comparisons of detailed arterial healing response at seven months following implantation of an everolimus- or sirolimus-eluting stent in patients with ST-segment elevation myocardial infarction. Int J Cardiol 2013; 168: 960-966. http://dx.doi.org/10.1016/j.ijcard.2012.10.043

Cook S, Wenaweser P, Togni M, et al. Incomplete stent apposition and very late stent thrombosis after drug-eluting stent implantation. Circulation 2007; 115: 2426-2434. http://dx.doi.org/10.1161/CIRCULATIONAHA.106.658237

Imai M, Kadota K, Goto T, et al. Incidence, risk factors, and clinical sequelae of angiographic peri-stent contrast staining after sirolimus-eluting stent implantation. Circulation 2011; 123: 2382-2391. http://dx.doi.org/10.1161/CIRCULATIONAHA.110.003459

Tada T, Kadota K, Hosogi S, et al. Optical coherence tomography findings in lesions after sirolimus-eluting stent implantation with peri-stent contrast staining. Circ Cardiovasc Interv 2012; 5: 649-656. http://dx.doi.org/10.1161/CIRCINTERVENTIONS.112.968487

Guagliumi G, Sirbu V, Musumeci G, et al. Examination of the in vivo mechanisms of late drug-eluting stent thrombosis: findings from optical coherence tomography and intravascular ultrasound imaging. JACC Cardiovasc Interv 2012; 5: 12-20. http://dx.doi.org/10.1016/j.jcin.2011.09.018

Dangas GD, Claessen BE, Caixeta A, Sanidas EA, Mintz GS, Mehran R. In-stent restenosis in the drug-eluting stent era. Review. J Am Coll Cardiol 2010; 56: 1897-1907. http://dx.doi.org/10.1016/j.jacc.2010.07.028

Ino Y, Kubo T, Kitabata H, et al. Impact of hinge motion on in-stent restenosis after sirolimus-eluting stent implantation. Circ J 2011; 75: 1878-1884. http://dx.doi.org/10.1253/circj.CJ-10-1182

Schwartz RS, Chronos NA, Virmani R. Preclinical restenosis models and drug-eluting stents: Still important, still much to learn. J Am Coll Cardiol 2004; 44: 1373-1385. http://dx.doi.org/10.1016/j.jacc.2004.04.060

Joner M, Finn AV, Farb A, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 2006; 48: 193-202. http://dx.doi.org/10.1016/j.jacc.2006.03.042

Hao H, Ishibashi-Ueda H, Tsujimoto M, et al. Drug-eluting stent: importance of clinico-pathological correlations. Circ J 2011; 75: 1548-1558. http://dx.doi.org/10.1253/circj.CJ-11-0393

Gonzalo N, Serruys PW, Okamura T, et al. Optical coherence tomography patterns of stent restenosis. Am Heart J 2009; 158: 284-293. http://dx.doi.org/10.1016/j.ahj.2009.06.004

Ino Y, Kubo T, Kitabata H, et al. Difference in neointimal appearance between early and late restenosis after sirolimus-eluting stent implantation assessed by optical coherence tomography. Coron Artery Dis 2013; 24: 95-101. http://dx.doi.org/10.1097/MCA.0b013e32835c872b

Nagoshi R, Shinke T, Otake H, et al. Qualitative and quantitative assessment of stent restenosis by optical coherence tomography: comparison between drug-eluting and bare-metal stents. Circ J 2013; 77: 652-660. http://dx.doi.org/10.1253/circj.CJ-12-0610

Kume T, Akasaka T, Kawamoto T, et al. Visualization of neointima formation by optical coherence tomography. Int Heart J 2005; 46: 1133-1136. http://dx.doi.org/10.1536/ihj.46.1133

Nagai H, Ishibashi-Ueda H, Fujii K. Histology of highly echolucent regions in optical coherence tomography images from two patients with sirolimus-eluting stent restenosis. Catheter Cardiovasc Interv 2010; 75: 961-963. http://dx.doi.org/10.1002/ccd.22267

Tada T, Kadota K, Hosogi S, et al. Association between tissue characteristics evaluated with optical coherence tomography and mid-term results after paclitaxel-coated balloon dilatation for in-stent restenosis lesions: a comparison with plain old balloon angioplasty. Eur Heart J Cardiovasc Imaging 2014; 15: 307-315. http://dx.doi.org/10.1093/ehjci/jet165

Doyle B, Rihal CS, O’Sullivan CJ, et al. Outcomes of stent thrombosis and restenosis during extended follow-up of patients treated with bare-metal coronary stents. Circulation 2007; 116: 2391-2398. http://dx.doi.org/10.1161/CIRCULATIONAHA.107.707331

Inoue K, Abe K, Ando K, et al. Pathological analyses of longterm intracoronary Palmaz-Schatz stenting. Is its efficacy permanent? Cardiovasc Pathol 2004; 13: 109-115. http://dx.doi.org/10.1016/S1054-8807(03)00132-7

Hasegawa K, Tamai H, Kyo E, et al. Histopathological findings of new in-stent lesions developed beyond five years. Catheter Cardiovasc Interv 2006; 68: 554-558. http://dx.doi.org/10.1002/ccd.20787

Nakazawa G, Otsuka F, Nakano M, et al. The pathology of neoatherosclerosis in human coronary implants bare-meta and drug-eluting stents. J Am Coll Cardiol 2011; 57: 1314- 1322. http://dx.doi.org/10.1016/j.jacc.2011.01.011

Takano M, Yamamoto M, Inami S, et al. Appearance of lipidladen intima and neovascularization after implantation of bare metal stents: extended late phase observation by intracoronary optical coherence tomography. J Am Coll Cardiol 2009; 55, 26-32. http://dx.doi.org/10.1016/j.jacc.2009.08.032

Park SJ, Kang SJ, Virmani R, Nakano M, Ueda Y. In-stent neoatherosclerosis: a final common pathway of late stent failure. J Am Coll Cardiol 2012; 59: 2051-2057. http://dx.doi.org/10.1016/j.jacc.2011.10.909

Kang SJ, Mintz GS, Akasaka T, et al. Optical coherence tomographic analysis of in-stent neoatherosclerosis after drug-eluting stent implantation. Circulation 2011; 123: 2954- 2963. http://dx.doi.org/10.1161/CIRCULATIONAHA.110.988436

Lee SY, Hur SH, Lee SG, et al. Optical coherence tomographic observation of in-stent neoatherosclerosis in lesions with more than 50% neointimal area stenosis after second-generation drug-eluting stent implantation. Circ Cardiovasc Interv 2015; 8: e001878. http://dx.doi.org/10.1161/CIRCINTERVENTIONS.114.001878

Lee T, Yonetsu T, Koura K, et al. Impact of coronary plaque morphology assessed by optical coherence tomography on cardiac troponin elevation in patients with elective stent implantation. Circ Cardiovasc Interv 2011; 4: 378-386. http://dx.doi.org/10.1161/CIRCINTERVENTIONS.111.962506

Ali ZA, Roleder T, Narula J, et al. Increased thin-cap neoatheroma and periprocedural myocardial infarction in drug-eluting stent restenosis: multimodality intravascular imaging of drug-eluting and bare-metal stents. Circ Cardiovasc Interv 2013; 6: 507-517. http://dx.doi.org/10.1161/CIRCINTERVENTIONS.112.000248

Lee SY, Hong MK, Shin DH, et al. Optical coherence tomography-based predictors for creatine kinase-myocardial band elevation after elective percutaneous coronary intervention for in-stent restenosis. Catheter Cardiovasc Interv 2015; 85: 564-572. http://dx.doi.org/10.1002/ccd.25643

Downloads

Published

2016-03-06

Issue

Section

Articles