Observational Study of the Inter-Individual Variability of the Plasma Concentrations of Direct Oral Anticoagulants (Dabigatran, Rivaroxaban, Apixaban) and the Effect of rs4148738 Polymorphism of ABCB1

Authors

  • Benilde Cosmi Dept Angiology and Blood Coagulation, Department of Specialty, Diagnostics and Experimental Medicine, University of Bologna, Bologna, Italy
  • Luisa Salomone Dept Angiology and Blood Coagulation, Department of Specialty, Diagnostics and Experimental Medicine, University of Bologna, Bologna, Italy
  • Michela Cin Arianna Foundation, Bologna, Italy
  • Giuliana Guazzaloca Dept Angiology and Blood Coagulation, Department of Specialty, Diagnostics and Experimental Medicine, University of Bologna, Bologna, Italy
  • Cristina Legnani Arianna Foundation, Bologna, Italy

DOI:

https://doi.org/10.12970/2311-052X.2019.07.02

Keywords:

 Stroke, brain lesions, aphasia, speech pathology, auditory comprehension, BDAE.

Abstract

Background and Aim: Direct oral anticoagulants (DOACs, i.e dabigatran, rivaroxaban, apixaban) can be administered in fixed doses without laboratory monitoring, however pharmacokinetic and pharmacodynamic characteristics indicate that clinical, demographic and pharmacogenetic factors can influence DOAC antithrombotic efficacy. The aim of this study was to establish the inter-individual variability of DOAC plasma concentrations and influence of ABCB1 rs4148738 polymorphism on DOAC plasma levels.

Materials and Methods: Patients (n=291) taking DOACs for either venous thromboembolism (VTE) or atrial fibrillation (AF) since at least 7 days were enrolled. Demographic and clinical characteristics were collected at enrollment on a standardized form. Diluted thrombin time was measured for dabigatran and anti-Xa activity for apixaban and rivaroxaban on plasmas obtained from blood samples collected in sodium citrate after one month at trough and at peak, e.g. at 2 hours after the morning dose. DNA was extracted from peripheral leukocytes for detection of rs4148738 ABCB1 – P-glycoprotein (P-gp) (intronic region G>A) polymorphism.

Results: All DOACs showed a high inter-individual variability for both peak and trough concentrations in the 291 enrolled patients. Dabigatran peak and trough levels were correlated with creatinine clearance. The ABCB1 gene rs4148738 polymorphism was determined in 142 patients and it influenced peak levels of rivaroxaban 20 mg with lower levels in homozygotes for the minor A allele but not those of apixaban. A non significant effect was observed on dabigatran 150 mg bid peak and trough levels of.

Conclusions: The rs4148738 polymorphism of ABCB1 gene of P-gp can influence rivaroxaban peak and trough levels.

References

Ansell J, Hirsh J, Hylek E, Jacobson A, Crowther M, Palareti G. Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 2008; 133(6 Suppl): 160S-198S. https://doi.org/10.1378/chest.08-0670

Kearon C, Akl EA, Ornelas J, et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest 2016; 149(2): 315-352. https://doi.org/10.1016/j.chest.2015.11.026

Chan NC, Eikelboom JW, Weitz JI. Evolving Treatments for Arterial and Venous Thrombosis. Role of the Direct Oral Anticoagulant. Circ Res 2016; 29; 118(9): 1409-2. https://doi.org/10.1161/CIRCRESAHA.116.306925

Gong IY, Kim RBI mportance of pharmacokinetic profile and variability as determinants of dose and response to dabigatran, rivaroxaban, and apixaban. Can J Cardiol 2013; 29 (7 Suppl): S24-33. https://doi.org/10.1016/j.cjca.2013.04.002

Tseng ST, Patel RD, Quist HE, et al. Clinical Review of the Pharmacogenomics of Direct Oral Anticoagulants. Cardiovascular Drugs and Therapy 2018; 32: 121-126. https://doi.org/10.1007/s10557-018-6774-1

Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 2009; 361(12): 1139-1151. https://doi.org/10.1056/NEJMoa0905561

Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med 2011; 365(10): 883-891. https://doi.org/10.1056/NEJMoa1009638

Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2011; 365(11): 981-982. https://doi.org/10.1056/NEJMoa1107039

Granger GB, Alexander JH, John J.V. McMurray, JJV, et al. Apixaban versus Warfarin in Patients with Atrial Fibrillation. N Engl J Med 2011; 365: 981-92.

Giugliano RP, Ruff CT, Braunwald E, et al. ENGAGE AF Edoxaban versus warfarin in patients with atrial fibrillation. ENGAGE AF-TIMI 48 Investigators. N Engl J Med 2013; 369: 2093-104. https://doi.org/10.1056/NEJMoa1310907

Schulman S, Kearon C, Kakkar AK, et al. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N Engl J Med 2009; 361(24): 2342-2352. https://doi.org/10.1056/NEJMoa0906598

EINSTEIN Investigators, Bauersachs R, Berkowitz SD, Brenner B, et al. Oral rivaroxaban for symptomatic venous thromboembolism. N Engl J Med 2010; 363(26): 2499-2510. https://doi.org/10.1056/NEJMoa1007903

EINSTEIN PE Investigators, Buller HR, Prins MH, Lensin AW, et al. Oral rivaroxaban for the treatment of symptomatic pulmonary embolism. N Engl J Med 2012; 366(14): 1287- 1297. https://doi.org/10.1056/NEJMoa1113572

Agnelli G, Büller HR, Cohen A, et al. AMPLIFY Investigators. Oral apixaban for the treatment of acute venous thromboembolism. N Engl J Med 2013; 369: 799-808. https://doi.org/10.1056/NEJMoa1302507

Büller HR, Décousus H, Grosso MA, et al. Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism. Hokusai-VTE Investigators. N Engl J Med 2013; 369: 1406-15. https://doi.org/10.1056/NEJMoa1306638

Stangier J, Rathgen K, Stahle H, Gansser D, Roth W. The pharmacokinetics, pharmacodynamics and tolerability of dabigatran etexilate, a new oral direct thrombin inhibitor, in healthy male subjects. Br J Clin Pharmacol 2007; 64(3): 292- 303. https://doi.org/10.1111/j.1365-2125.2007.02899.x

Kitzmiller JP, Groen DK, Phelps MA, Sadee W. Pharmacogenomic testing: relevance in medical practice: why drugs work in some patients but not in others. Cleve Clin J Med 2011; 78(4): 243-57. https://doi.org/10.3949/ccjm.78a.10145

Gong IY, Mansell SE, Kim RB. Absence of both MDR1 (ABCB1) and breast cancer resistance protein (ABCG2) transporters significantly alters rivaroxaban disposition and central nervous system entry. Basic Clin Pharmacol Toxicol 2013; 112(3): 164-70. https://doi.org/10.1111/bcpt.12005

Pare G, Eriksson N, Lehr T, et al. Genetic determinants of dabigatran plasma levels and their relation to bleeding. Circulation 2013; 127(13): 1404-12. https://doi.org/10.1161/CIRCULATIONAHA.112.001233

Cullell N, Carrera C, Muiño E, Torres N, Krupinski J, Fernandez-Cadenas I. Pharmacogenetic studies with oral anticoagulants. Genome-wide association studies in vitamin K antagonist and direct oral anticoagulants. Oncotarget 2018; 9(49): 29238-29258. https://doi.org/10.18632/oncotarget.25579

Kanuri SH, Kreutz RP. Pharmacogenomics of Novel Direct Oral Anticoagulants: Newly Identified Genes and Genetic Variants. J Pers Med 2019; 9(1). https://doi.org/10.3390/jpm9010007

O’Connor CT, Kiernan TJ, Yan BP. The genetic basis of antiplatelet and anticoagulant therapy: a pharmacogenetic review of newer antiplatelets (clopidogrel, prasugrel and ticagrelor) and anticoagulants (dabigatran, rivaroxaban, apixaban and edoxaban). Expert Opin. Drug Metab. Toxicol 2017; 13(7): 725-739. https://doi.org/10.1080/17425255.2017.1338274

Asic A, Marjanovic M, Mirat J, Primorac D. Pharmacogenetics of novel oral anticoagulants: a review of identified gene variants & future perspectives. Personalised Medicine 2018; published online 16 may. https://doi.org/10.2217/pme-2017-0092

Goldhaber SZ, Bounameaux H. Pulmonary embolism and deep vein thrombosis. Lancet 2012; 379(9828): 1835-46. https://doi.org/10.1016/S0140-6736(11)61904-1

Rahman F, Kwan GF, Benjamin EJ. Global epidemiology of atrial fibrillation. Nature Reviews Cardiology 2014; 11(11): 639-54; Erratum in Nat Rev Cardiol 2016; 13(8): 501. https://doi.org/10.1038/nrcardio.2014.118

Steffel J, Verhamme P, Potpara TS, et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. European Heart Journal 2018; 39(16): 1330-1393. https://doi.org/10.1093/eurheartj/ehy136

Chan N, Sager PT, Lawrence J, et al. Is there a role for pharmacokinetic/pharmacodynamic-guided dosing for novel oral anticoagulants? Am Heart J 2018; 199: 59-67. https://doi.org/10.1016/j.ahj.2017.10.002

Harskamp RE, Teichert M, Lucassen WAM, van Weert HCPM, Lopes RD.Impact of Polypharmacy and PGlycoprotein- and CYP3A4-Modulating Drugs on Safety and Efficacy of Oral Anticoagulation Therapy in Patients with Atrial Fibrillation. Cardiovasc Drugs Ther 2019; 33(5): 615- 623. https://doi.org/10.1007/s10557-019-06907-8

Testa S, Paoletti O, Legnani C, et al. Low drug levels and thrombotic complications in high-risk atrial fibrillation patients treated with direct oral anticoagulants. J Thromb Haemost 2018; 16(5): 842-848. https://doi.org/10.1111/jth.14001

Testa S, Legnani C, Antonucci E, et al. Drug levels and bleeding complications in atrial fibrillation patients treated with direct oral anticoagulants J Thromb Haemost 2019; 17(7): 1064-1072. https://doi.org/10.1111/jth.14457

Gouin-Thibault I, Delavenne X, Blanchard A, et al. Interindividual variability in dabigatran and rivaroxaban exposure: contribution of ABCB1 genetic polymorphisms and interaction with clarithromycin. J Thromb Haemost 2017; 15(2): 273-283. https://doi.org/10.1111/jth.13577

Ing Lorenzini K, Daali Y, Fontana P, Desmeules J, Samer C. Rivaroxaban-induced hemorrhage associated with ABCB1 genetic defect. Front Pharmacol 2016; 7: 494. https://doi.org/10.3389/fphar.2016.00494

Dimatteo C, D’Andrea G, Vecchione G, et al. ABCB1 SNP rs4148738 modulation of apixaban interindividual variability. Thromb Res 2016; 145: 24-6. https://doi.org/10.1016/j.thromres.2016.07.005

Reiffel JA, Weitz JI, Reilly P, et al. on behalf of the other Cardiac Safety Research Consortium presenters and participants. NOAC monitoring, reversal agents, and postapproval safety and effectiveness evaluation: A Cardiac Safety Research Consortium think tank. Am Heart J 2016; 177: 74-86. https://doi.org/10.1016/j.ahj.2016.04.010

Sennesael AL, Larock AS, Douxfils J, Elens L, Stillemans G, Wiesen M, Taubert M, Dogné JM, Spinewine A, Mullier F. Rivaroxaban plasma levels in patients admitted for bleeding events: insights from a prospective study. Thromb J 2018; 16: 28. https://doi.org/10.1186/s12959-018-0183-3

Sychev D, Minnigulov R, Bochkov P, Ryzhikova K, Yudina I, Lychagin A, Morozova T Effect of CYP3A4, CYP3A5, ABCB1 Gene Polymorphisms on Rivaroxaban Pharmacokinetics in Patients Undergoing Total Hip and Knee Replacement Surgery. High Blood Press Cardiovasc Prev 2019; 26(5): 413-420. https://doi.org/10.1007/s40292-019-00342-4

Downloads

Published

2019-03-25

Issue

Section

Articles