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Synchronization and Intermittency of Type I in the Oscillator Model 
of Heart Rhythm 
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Abstract: With the help of the truncated equation investigated the intermittent behavior of the oscillator Van der Pol 
oscillator under periodic external action in the absence and in the presence of noise. A method for determining when 
reinjection by constructing a singular component of the power spectrum of the signal by the flicker noise spectroscopy. 

A procedure for determining the current parameters of the oscillator based on the calculation of the wavelet coefficients 
of the signal system using fast discrete wavelet transform and application of the differentiation formulas wavelet 
expansions. 
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One known scenario of transition to chaos is the 
transition through intermittency. Under intermittency 
mean [1], this kind of signal, which randomly alternate 
long regular (laminar) phase (so called window) and 
relatively short irregular bursts. This state of the 
system, described by the data signal, commonly 
referred to as an attractor type noisy cycles [2]. It is 
noticed that the random number of bursts increases 
with increasing external parameter, which means that 
intermittency is a continuous transition from regular to 
chaotic motion. The statistical characteristics are 
studied for a long time, in connection with the 
distinction between the different types of intermittency, 
such as the intermittency of type I-III [1,3], on-off 
intermittency [4-5], intermittency "needle's eye" [6-7] 
and intermittence cycle [8]. 

According to the conceptual framework of flicker 
noise spectroscopy [9], the most common to view the 
evolution of the dynamic variable for th space-time 
level is presented in the form of intermittency, when not 
all the slots on the time axis information equivalent. 
This pattern is characterized by relatively weak 
changes in a variable on a relatively extended time 
intervals - "laminar phases" with typical durations T0

i

 
and abrupt interruptions of such abrupt changes of 
evolution of the value of a dynamic variable in the short 
duration of the intervals ! 0

i  ( ! 0
i "T0

i ). Due to the inertia 
of the system, each such an abrupt change in the 
dynamic variable values may be associated with 
dynamic bursts - and a sharp increase in short-term 
relaxation Vi (t)  with attenuation values on the 
subsequent "laminar" plot, leading to rupture of 
derivatives related to "laminar" sections. The 
magnitude and duration of these bursts are specific to  
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each system, causing a certain contribution to the 
corresponding power spectrum. Such jumps and 
discontinuities are in [9] for the first jumps and breaks 
derivatives type, assuming that the variable Vi (t)  can 
be characterized by sharp changes in the intervals of 
intermittent "laminar" background. For the typical time 
intervals between such sharp jumps (they are referred 
to jumps of the second type) is introduced designation 
believing. It is believed that all the basic information 
about the evolutionary process for th hierarchy level 
contains only these bursts, jumps and discontinuities 
input signal. All these irregularities are considered as 
the main and the only "tokens" of the evolutionary 
process. 

There is no doubt that the various types of 
intermittent behavior can occur in a wide range of 
systems, including self-oscillating system, in the 
presence of noise and fluctuations. In this paper, an 
analysis of the transition to synchronization modes 
(frequency capture, phase, phase jumps) in the 
oscillator Van der Pol at periodic external action in the 
absence and in the presence of noise. With the help of 
the truncated equation to investigate the process of 
destruction of synchronization with a small phase 
mismatch of foreign forces and their own self-oscillation 
in the event of a local saddle-node bifurcation on the 
boundary of the synchronization (often called the 
recent Arnold language). In close proximity to the 
language border observed intermittency of type I: 
extensive areas of almost constant phase ( "laminar" 
phase) are separated by relatively short sections of 
"slippage" phase, where it is changed to a value close 
to 2!  ("turbulent" phase). This noise makes the main 
features in the intermittent behavior when the system in 
the absence of type I intermittency shows. 

When reinjecting produced damping vibration 
process. Moment of reinjection, leading to 
relaminarization determined by us by constructing a 
singular component of the power spectrum of a signal 
generated by the system. 
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In contrast to the existing methods for determining 
the current values of the parameters of the nonlinear 
oscillator, in this paper, we propose an alternative 
version of the technical detection procedure, based on 
the calculation of the analyzed system signal wavelet 
coefficients using fast wavelet transform and 
application of the formulas of differentiation of the 
discrete wavelet decomposition, which reduces the 
problem of the definition of oscillator options to solving 
a system of linear algebraic equations in the space of 
wavelet coefficients. This approach not only provides a 
significant gain in computational speed by the use of 
fast (pyramidal) algorithm of discrete wavelet 
transform, but also a significantly higher noise immunity 
compared to the procedure of using the approximate 
formulas of numerical differentiation, based on 
Newton's interpolation polynomials. 

1. GO TO THE SYNCHRONIZATION AND 
INTERMITTENCY OF TYPE I IN THE OSCILLATOR 
VAN DER POL AT PERIODIC EXTERNAL 
INFLUENCE DURING THE ABSENCE OF NOISE 

Consider the nonautonomous generator Van der 
Pol oscillator under external harmonic action.  

 
!!x ! " ! x2( ) # !x+ x = B #sin $t( ) .       (1.1) 

Here, the dimensionless parameter determines the 
amplitude, and ω- exposure frequency. If the system is 
described by equation (1.1) is close to the threshold of 
self-oscillations (λ small), the amplitude of these 
oscillations and the amplitude of the effects are small, 
and the frequency of exposure close to the frequency 
of small natural vibrations, you can use a variant of the 
method of slowly varying amplitudes, for example, 
method of complex amplitudes proposed by Van der 
Pol [10,11], according to which the solution of the 
equation (1.1) is sought in the form of a quasi-harmonic 
oscillation with slowly varying amplitude A(t)  

 x t( ) = Re A t( )ei!t( ) .        (1.2) 

Substituting (1.2) (1.1) by averaging over the period, 
to arrive at truncated equation [11] 

 
!A+ i

! 2 "1( )
2!

A = #A
2
"
A 2
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8

"
B
2!

 .      (1.3) 

We are interested in the case when the autonomous 
system performs self-excited oscillations, ie, λ>0 . 
Believing 

! =
"t
2
, z = A

4"
, # =

$ 2 %1( )
"$

, & = B
2$" 3/2

,     (1.4) 

z(τ) rewrite (1.3) in the unknown function:  

 
!z+ i!z = z" z 2 # z"$  ,        (1.5) 

now where the dot denotes differentiation with respect 
to the parameter is the renormalized amplitude of 
external influence ∆- influence on the frequency 
detuning of the natural frequency of oscillation ω0. 

The parameter η is defined in (1.4) through the 
attitude B and λ3/2 values that are applicable to the 
method of slowly varying amplitudes of the two should 
be small. However, the relationship between them can 
be set in any way, only the parameter was small. This 
is ensured, for example B<<λ3/2.. The applicability of 
this approach is, therefore, a double inequality 
B<<λ3/2<<1 

Let's present complex amplitude in the form 
z = Rei! . Then from the equation (1.5) we receive.  

 
!Rei! + iR !! ei! + i"Rei! = Rei! # R3 ei! #$ .     (1.6) 

Multiplying this equation ei!  by and separating the 
real and imaginary parts, we obtain 

 

!R = R! R3 !" # cos$
!$ = !%+ " / R( )sin$.

         (1.7) 

Assume that the amplitude of the impact is small, 
i.e. parameter is small. In the zero-order in !  the first 
equation (1.7) we find the amplitude of the stationary 
vibrations R =1 and substitute it in the second 
equation. As in the second equation the corresponding 
term contains a ε factor, when this substitution can be 
used for R the zero-order approximation. As a result, 
we obtain a closed equation for a single variable - in 
relation to the external action phase oscillations of the 
system. 

 
!! = "+# $sin! .           (1.8) 

In the foreign literature it is called the equation of 
Adler. 

We introduce the function 

U !( ) = ! "#+$ " cos! = # ! + $ /#( )cos!%& '(       (1.9) 

and write the equation (1.8) in the form 

 
!! = "#U /#! .       (1.10) 

From the point of view of the form of the potential 
function (1.9), significant is its dependence on the 

relationship ! /" . Since !U
!"

= # 1$ % /#( )sin"&' () , when 

the ! /" <1  potential depends monotonically ! , as in 
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1! " /#( )sin$ > 0  this case coincides with the sign ! . 

When ! /" =1
 

another phase dependence is 

monotonic 1! " /#( )sin$ % 0  as but acquires the 

inflection point (if !
2U
!" 2

=1# $ /%( )cos" = 0 ) where the 

tangent is horizontal (the point at which the 

simultaneous !U
!"

= 0  and !2U
!" 2

= 0
 

equations satisfy 

relations, sin! = cos! = 1
" /#  

i ! /" =1  when and 

! /" = #1  under) , and the graph of the function in this 

case has the form of locally cubic parabola y = x3  
(critical situation). Finally, ! /" >1

 
when the potential 

function U !( )  has highs and lows, as changes its !U
!"  

sign at some ! . Figure 1 [11] shows the area where is 
realized the first and third situations in the parameter 
plane !,"( ) . The critical situation occurs on the 
delimiting lines ! =±" . 

 
Figure 1: Field of sync or Arnold language (gray) on the 
plane !,"( ) . 

To study the phenomenon of synchronization will 
assume that self-oscillation quasi-linear, ie, solution of  

 
!!x ! " ! x2( ) !x+ x = 0       (1.11)  

It represented as 

x t( ) = A0 sin !0t +"0( )   

a frequency !0  and amplitude A0 , and an external 
force - is harmonic with the frequency ! , i.e. force has 
the form Bcos !t +"e( )  where - power phase (!e  phase 

be the initial force, and - its amplitude is important that 
the frequency of power is generally different from the 
frequency of oscillations !0 , which is called the 

autonomous rate; ! "!0  detuning difference is called 
[10]. 

In the reference system rotating with angular 
velocity ! , force Bcos !t +"e( ) , oscillating at a 

frequency granted permanent vector B of length acting 
at an angle  !

! = !e +" / 2  of quasi-linear self-
oscillations. The equilibrium position  !

!  is 
asymptotically stable, while the phase !0  of the 
oscillation is unstable asymptotically independent and 
stable only neutral. 

Let us first consider the simplest case of zero 
detuning, ie, when ! =!0 . Thus, regardless of the 
initial phase difference ! "!e , the phase point moves 
towards a stable equilibrium, so in the end  ! = !e +!

! , 
ie phase of oscillation force captured. 

Of course, the synchronous mode is set for a very 
long time. This case is quite trivial since, by 
assumption, frequency !  and !0  coincide with the 
start, so that synchronization occurs only to establish a 
certain ratio between the phases. 

Suppose now that the frequency of power is 
different !  from the frequency of autonomous 
oscillations !0 , we assume for definiteness !0 >! . 
Consider the impact of external forces on the slowly 
rotating phase point. At a certain phase difference 
value of the rotation  !" = " #"e #"

!  force balances and 
stops him. As a result, self-oscillation frequency of the 
driving ! , called the observed frequency becomes 
equal to the frequency power ! =" , and sustainable 
relationship is established between the phases. Such a 
motion is called synchronized [10]. If synchronization is 
not the same phase, but their difference is constant 

 ! "!e = !
! +#! ; Angle !"  called phase shift. For 

sufficiently small frequency detuning !  is captured - it 
becomes ! . If the deviation exceeds a certain 
threshold, then the equality ! ="  is violated. 
Coincidence frequency within a finite range of detuning 
is the basic sync feature, called the seizure frequency. 

If the deviation exceeds a certain threshold, the 
force can not stop the rotation. With increasing 
mismatch (i.e., with increasing speed of rotation 
!0 "! ) state, the equilibrium is shifted towards the 
point where the maximum force retarding action. In the 
end, the stable and unstable equilibrium state collide 
and disappear, and the phase point starts to rotate with 
the so-called beat frequency !b . Although this 
mismatch external power is not sufficient for 
synchronization, it significantly affects the dynamics: 
the power of making the rotation uneven and the 
average protects it, so !b <"0 #" . 
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Returning to the original frame of reference we see 
that the self-oscillation frequency ! +"b <!0  and have 
a growth phase modulated at a frequency of heartbeat 
!b . This movement is characterized by two 
frequencies (! +"b  and !b ) are called quasi-periodic. 
More specifically, the movement - quasiperiodic-cal, if 
the ratio ! +"b( ) /"b  is irrational, that is a typical 
situation. 

Thus, even a small force can lead to the seizure 
frequency of oscillation. The greater the mismatch, the 
greater force is required for synchronization. 

The family of curves depending !"#  on the !  
force for different values of the amplitude possible B  to 
determine the area of a plane !,B( ) , corresponding to 
the synchronized oscillator condition (Figure 2 [10]), ie, 
the area in which the frequency of the driving !  
oscillation frequency is equal to the outside !  (Figure 
2, it is shaded). 

 
Figure 2: Dependence !"#  on !  for different values of the 
amplitude of the force B . 

This area is called domain synchronization or 
tongue Arnold. At low limits of language - direct line: it 
is the general case for weakly perturbed self-
oscillations (Figure 3 [11]). 

For large form of the language depends on the 
specific properties of the self-oscillation and power. 
Area synchronization concerns axis. This means that at 
zero detuning self-oscillation can be synchronized with 
an arbitrarily small force (although in this case, the 
transient state may be synchronized to last indefinitely), 
so that powerful oscillator frequency can be stabilized 
by weak but high-quality of the auxiliary signal 
generator. 

Synchronization is often described in terms of the 
capture phase. In asynchronous movement occurs 
unlimited growth phase difference, while in the 

synchronous mode the phase difference is limited and 
there is a constant phase shift between the oscillations 
and strength.  

! t( )"!e t( ) = const ,      (1.12) 

where the constant is  !
! +"! . Required for phase 

locking to the phase difference remained limited in a 
finite region detuning i.e. inside the synchronization 
region. 

 
Figure 3: Scope or synchronization Arnold Language (gray) 
on a plane !,B( ) , where - !  frequency detuning, B - the 

amplitude of the impact; 3 - Sync area B /!( ) >1 , 2 - the 

boundary of the synchronization region ! =±B( ) . 

Choose !  in the middle of the field synchronization 
and consider how synchronization is lost when crossing 
language boundaries due to changes in the frequency 
of exposure. Let's start with zero development, !0 =!  
and will be gradually reduce the frequency of the 
external force ! . If the deviation is zero, then the 
phase difference  !" = "

! ; For definiteness, we assume. 
With increasing detuning becomes non-zero phase 
shift. When the point crosses the language border, 
there is a loss of synchronization and the phase 
difference increases indefinitely. However, this growth 
is not uniform: there are periods of time when the 
phase difference is almost constant, and shorter 
periods, when the phase difference rather quickly 
increases by 2! . This rapid change, looks like a leap, 
called the slip phase (phase slip). phase jump speed 
depends on the amplitude of the force. With a weak 
impact of breakthrough lasts a few may even force 
many periods. 

Synchronous and slip alternate intervals, so that we 
can say that the dynamics of the phase difference - 
intermittent. With a further increase in the duration 
mismatch almost synchronous intervals becoming 
smaller, and eventually increase the phase difference 
becomes almost uniform. [10] 
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Character mode system (1.1) outside the 
synchronization region (when ! >" ) it is easy to install 
with the help of the differential equation (1.8), which in 
this case has an analytical solution [11]:  

! =
"
2
# 2arctg $#%

$+%
tg 1
2

$2 #%2&
'

(
)

*

+
,

-

.
/
/

0

1
2
2
.    (1.13) 

Let's expression (1.13) the dependence of the 
phase on time is given by the period T = 2! "2 #$2  of 
oscillations superimposed on a linear drift with an 
average speed of phase (Figure 4 [11]). 

 

! !"# =
$ %2 $&2 , % > 0,

%2 $&2 , % < 0.

'
(
)

*)
     (1.14) 

 
Figure 4: The time dependence of the phase at ε=0.2 in 
synchronization tongue (Δ=0.15) and the tongue is in close 
proximity to the border ((Δ=0.202) and a somewhat greater 
distance from it ((Δ=0.21). 

From Figure 4 shows that in the vicinity of the 
boundary can be observed tongue portions almost 
constant phase separated by relatively short sections 
"slip" phase, where it is changed to a value close. 
Phase transformation depending on approaching the 
boundary of the synchronization area is to increase the 
permanence phase plots. 

For small amplitudes of the first exposure to the 
approximate solution of equation (1.7) is the R =1 
solution of the truncated equation (1.5) is represented 
in the form z = ei! . Then the solution of equation (1.1) 

x = ReAei!t = 2 " Re ze2i!# /" =

2 " cos$ % cos 2!#
"

&

'
(

)

*
+, sin$ %sin
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"
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/
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)
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+

,
-

# "cos "2 #$2%( )+$( ) &sin 2'%
!

(

)
*

+

,
-

"+$ cos "2 #. 2%( )
.  

The process described by expression (1.15) 
comprises two frequency corresponding to the fast and 
slow fluctuations, respectively, 

!0 = 2" / #  и !1 = "2 #$2 .     (1.16) 

They may be in an arbitrary, including irrational 
regard. Then we are not dealing with the periodic and 
quasi-periodic oscillation with the process. This 
oscillatory regime is realized outside the scope of 
synchronization is called beat regime with the beat 
frequency !b = "2 #$2  [12]. 

Let us see what happens in the phase plane 
x = Re z, y = Im z( )  of the truncated equation (1.5), when 

we pass the boundary of the synchronization ! ="( )  
at low amplitude effects. For small !  and large !  
stable fixed point z* = const  (singular point - node) in 
the complex plane corresponds to the amplitude of the 
synchronous mode, and the destruction of local 
synchronization corresponds to a saddle-node 
bifurcation associated with the global bifurcation of a 
limit cycle from a separatrix of the saddle and the 
general assembly [13,14]. Below boundary timing 
mode (for small frequency detuning ! ) in the phase 
difference versus time 

!" t( ) = " t( )#$ t       (1.17) 

(where ! t( ) - the phase of the Van der Pol oscillator) 
contains lots of synchronous dynamics (laminar 
phase), discontinuous phase slip (turbulent phase), 
during which the value !" t( )  is changed to 2! . 

The average duration of laminar phases T  is 
dependent on the critical parameter setting according 
! = Bc " B( )  to the law  

T ! " #"c( )#1/2 , (1.18) corresponding intermittency of 
type I. The critical amplitude of the external force Bc , 
resulting in the destruction of synchronization due to a 
saddle-node bifurcation, is calculated from the 
relationship  

! ="#
$ 2 %1
&$

=
B

2$& 3/2
# Bc = 2' ( $

2 %1( ) .   (1.19) 
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The classic model for the study of type I 
intermittency is [15] a one-parameter quadratic map 

xn+1 = f xn( ) = xn + xn2 +! ,      (1.20) 

where ! - the control parameter. The value !c = 0  
corresponds to a saddle-node (tangent) bifurcation, 
where stable and unstable fixed points xu,s =± !

1/2 , 
merge with each other at a point and disappear. 

Below the critical value of the parameter ! < !c there 

is a stable fixed point xs = ! "
1/2 , while above there is 

!c  a narrow corridor between the graph of the function 
f x( )  and the xn+1 = xn  bisector, so that the image point 

of the mapping (1.20) moves along it (Figure 5 [16]). 

This movement corresponds to a laminar phase, 
and its average duration T  is inversely proportional to 
the square root of, ! "!c( ) , the asymptotic equality 
(1.18) [17]. 

2. SYNC AND INTERMITTENCY OF TYPE I IN THE 
OSCILLATOR VAN DER POL AT PERIODIC 
EXTERNAL ACTION IN THE PRESENCE OF NOISE 

Consider the nonautonomous generator Van der 
Pol 

 
!!x ! " ! x2( ) !x+ x = bsin # ! t( )+D$ t( )       (2.1) 

under the influence of an external harmonic with 
amplitude b  and frequency ! , while the presence of a 
stochastic term which D! t( ) - delta-correlated rovanny 

white noise ! t( ) = 0, ! t( )! "( ) =# t $"( )%& '( . Here ! - 

averaging sign ! t( )  - Dirac function. 

When considering the synchronization of self-
oscillations of noise are distinguished [10] for the case: 
i( )  a faint noise limited and ii( )  unlimited or limited 

strong noise. 

Weak limited noise at low frequency deviation !  
does not result in leakage, noise can not throw a 
particle from one building to another minimum. In this 
case, !"  the phase difference fluctuates in the 
presence of random noise, but remains limited, and the 
condition of phase locking  

!e "! < const          (2.2) 

it is still valid. The average frequency !  of oscillation 
and noise captured by force. In larger mismatch noise 
intensity becomes sufficient to overcome the potential 
barrier, and the particle begins to slide down the 
significance of the graph, wherein the transition occurs 
at a lower detuning, than in the absence of noise. 

If the noise is unlimited (ie, Gaussian), or a limited, 
but powerful, it skips phase. When you angle the 
potential jumps down occur more frequently, and the 
average phase difference grows at an arbitrarily weak 
detuning. Strictly speaking, unlimited noise destroys 
synchronization, so that neither the capture phase 
condition (2.2), or the condition of frequency capture 
! ="  formulated for the deterministic case, are not 
fulfilled. Nevertheless, at least for low noise, one can 
speak of an approximate equal frequency in a range of 
detuning. With this range increase of noise intensity 

 

Figure 5: Iterative diagram display for ε>0 (a), and ε<0 (b). Stable xs = !
1/2

 and unstable xu = !
1/2

 fixed points of the map are 
marked • and 0 respectively. 
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decreases, and the synchronization is shown as a 
weak "pull-up" of the observed frequency to the 
frequency of the external force ! . 

For noise systems, generally speaking, it is 
impossible to talk about the capture phase, because 
the phase difference is not limited. On the other hand, 
the particle is often a minimum capacity, and therefore 
a certain ! "!e  value is more likely to occur. The 
existence of a preferred phase difference values ! "!e  
can be interpreted as a statistical analog phase locking. 
A similar distribution of phases is observed in the self-
oscillations without noise, near the transition from the 
phase synchronization when the speaker - intermittent 
(see Figure 3). 

To construct a theory of intermittency of type I in the 
presence of noise [16] the quadratic mapping (1.20) 
with the addition of a stochastic term !n : 

xn+1 = xn + xn
2 +! +"n ,        (2.3) 

where !n - delta-correlated white noise with zero mean 

!n = 0, !n!m = D" n#m( )$% &' . 

The degree of influence of the stochastic !n  term 
behavior of the system is governed by the value of the 
parameter D  (noise intensity). For positive values of 
the parameter ! ! > 0( ) , the image point on the chart 
corresponding to the iterative behavior of the system 
(2.3), moves along a narrow corridor, and this motion is 
perturbed randomly. While the intensity of the noise is 
small, there are characteristics that are close to those 
of the classical type of intermittency I, as described at 
the end of section 1. 

A different scenario occurs if the control parameter 
!  takes negative values (! < 0 ). In this case, the point 
corresponding to the behavior of the system (2.3), for a 
long time remained in the area x < xc = !

1/2 , and the 
dynamics of the system are also outraged by the 
random force. Once the image point due to the 
influence of the noise reaches the limit xc = !

1/2 , the 
system begins the turbulent phase, but such an event 
occurs infrequently. 

In this case, display behavior (2.3) is fundamentally 
different from the dynamics of the system (1.20), since 
(1.20) is the turbulent phase is not observed in the 
absence ! < 0  of noise in. Consequently, the negative 
values of the parameter !  is an important concern 
when considering the intermittency of type I in the 
presence of noise 

Assuming that the !  value is negative and small, 
and the x  value is changed in one iteration slight, can 

be seen the difference xn+1 ! xn( )  of a derivative with 
respect to time and switch from a system with discrete 
time (2.3) to a streaming system, a continuous-time 
described by stochastic differential equation similar to 
that carried out in the classical theory of intermittency 
of type I. The resulting stochastic differential equation 
is equivalent to the Fokker-Planck equation, using that 
in [16] it is shown that the distribution of the duration of 
laminar phases is expressed by the exponential law 

p t( ) =T !1 exp !t /T( ) ,        (2.4) 

Where T - the average duration of laminar phases, 
defined by the expressio 

T = 1
k !

" exp
4 ! 3/2

3D

#

$
%
%

&

'
(
( ,        (2.5) 

k -proportionality factor 

The analytical expression (2.5) for an average 
duration is consistent with the decision of the laminar 
phases  

T ! "
#1/2 f $ 2 "

#3/2( ) ,       (2.6) 

derived in previous studies [18-20] and coincides with 
the formula for, given in [21]. Another critical parameter 
value of the parameter !  is large enough, you can use 
the approximate equation [21]. 

lnT ! D"1 #
3/2 .         (2.7) 

Previously intermittent behavior in the presence of 
noise has been studied in [18] using the Fokker-Planck 
equation on the basis of renormalization-group 
analysis, but the characteristic patterns were found 
only in the subcritical region where the intermittent 
behavior is observed both in the presence of noise and 
when no. In the supercritical region ! < 0( ) , where 
there is no noise intermittency does not arise, 
theoretical consideration Move-ment behavior of the 
presence of noise was carried out in [21]. At the same 
analytical form according to the average duration of 
laminar phases of supercritical parameter !  was 
obtained under the assumption of a fixed-term 
probability reinjection external action taken in the form 
! - function. At the same time, another important 
statistical characteristics of intermittent behavior, 
namely the distribution of the duration of laminar 
phases is not considered in the supercritical region of 
parameters of control values. 

In [16] analytically derived form of the distribution of 
the laminar phases for the intermittency of type I in the 
presence of noise in the supercritical region of the 
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control parameter values. It therefore follows already 
known dependence of the average duration of laminar 
phases of the critical parameter setting [21,22]. 
Moreover, it was shown that the pattern obtained in 
[21], assuming a fixed probability reinjection selected 
as ! -function, actually, almost independent of the 
nature of the process and relaminarization respectively, 
the resulting expression for the average duration of the 
phase parameter laminar supercritical remains valid in 
various forms of probability reinjection. 

However, proposed in [16] The theory explains the 
emergence of a long laminar regions and does not say 
anything about the description of chaotic bursts that 
require additional research. Total phenomenological 
(nemodelny) approach to the analysis of irregularities - 
bursts based on the flicker-noise spectroscopy, 
proposed in [9] and is used in Section 3 for the 
construction of a singular component of the power 
spectrum of a signal. 

It is also one of the most interesting phenomena in 
coupled self-oscillatory systems is the effect of 
vibrations of the death (amplitude death, oscillator 
death). This effect is that the dissipative coupled 
avtokole-vibrational oscillators with different natural 
frequencies with the withdrawn-cheniem 
communication occurs damping of oscillation and 
transition to steady state exposure. 

To restore the self-oscillation pulse is used 
reinjection periodic influence on the oscillatory system. 
Thus, in the pacemaker models just used a peripheral 
signal to correct an abnormally slow heart rate 
(bradycardia). In such devices, the electrical impulses 
from the implanted generator stimulates the driver of 
cardiac rhythm (pacemaker) first order - the sinoatrial 
node - and cause the contraction of the heart. Modern 
pacemakers - a programmable adaptive devices that 
use complex algorithms to monitor cardiac activity; they 
change in heart rate depending on time of day, the 
patient's physical activity, etc. 

Moment of reinjection may be determined from the 
power spectrum analysis of one-dimensional dynamic 
variable that describes x t( )  the behavior of the system 
(2.1), which is described in detail in Section 3. 

3. CONSTRUCTION OF A SINGULAR COMPONENT 
OF THE POWER SPECTRUM OF THE SIGNAL 

In order to assess the type of irregularities bursts 
will use the method of flicker-noise spectroscopy 
(FNS), by which the estimated parameters of the 
singular component of the power spectrum of the 
signal. The method of flicker noise spectroscopy is a 
common phenomenological (nemodelnym) approach to 
the analysis of chaotic signals of different nature [9]. 
The essence of the FNS approach is to give 

information of significance of correlations, which are 
implemented in the signal sequences of irregularities - 
bursts, breaks of the derivatives of various orders - as 
a media measurement information, occurring at every 
level of spatio-temporal hierarchical organization of the 
study of the dynamical system. 

For a one-dimensional signal V t( )  defined in the 

interval 0,T[ ]  from discrete steps !t  at points 

 tk = k ! "t(k =1,…,N ) , N = T /!t[ ] , its mean value is 

calculated V t( ) = 1
N

V tk( )
k=1

N

! . We believe further that a 

signal V t( )  stationary and V t( ) = 0 . The spectrum of 

the signal S f( )  power is defined as the  

Fourier transform of the autocorrelation function. 
When calculating the autocorrelation function  

! "( ) = V t( )V t +"( )         (3.1) 

we will assume 

f ! f * f *= fmax, fmax =1/"t( ), # ! # * # * =T / 4( ) ,     (3.2) 

where f - frequency !  - time delay setting. 

For a stationary signal S f( ) = Sc f( )  where Sc f( ) - 
cosine transform, the Fourier of the autocorrelation 
function. 

In the discrete case "experimental" power S f( )  
spectrum calculated by the trapezoid method:  

Sc f( ) = 1
!t
Sc q( )         (3.3) 

 

Sc q( ) =! 0( ) +! M
2

"

#
$

%

&
' (1( )q

+2 ! m( ) ) cos 2*qm
M

"

#
$

%

&
' q = 0,1,…,M (1( )

m=1

M /2(1

+
,     (3.4) 

 q = f !TM , TM <T , TM =M !
T
N
=M ! "t ,      (3.5) 

f = q
TM

=
q

M ! "t
=
q /M
"t

,        (3.6) 

M =
TM
T
!N

"

#$
%

&'
 an even number of points on the 

frequency axis. 
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For any m = ! /"t[ ]  и N = T /!t[ ]  "experimental" 
autocorrelator is calculated according to the formula 

 
! m"( ) = 1

N #m"

V k( )V k +m"( )
k=1

N#m"

$ m" = 0,1,…,M #1( ) .(3.7) 

The number M should satisfy the relation 

4
3
!M ! N .        (3.8) 

The power S f( )  spectrum has a negative even 
function f  with a period of 2!  [23]. 

Let VR t( )  and VF t( ) , respectively, low and high 
frequency components of the signal. Isolation of high-
frequency component based "relaxation" procedure 
[24] built on the analogy with the solution of the 
diffusion equation with the diffusion coefficient !  

!V
!"

= # $
!2V
!t 2

,         (3.9) 

It is represented as a difference equation  
Vk

j+1 !Vk
j

"#
= $ %

Vk+1
j +Vk-1

j ! 2Vk
j

"t( )2
,     (3.10) 

corresponds to a simple difference scheme for 
numerical solutions of differential equations. 

From (3.10) we obtain 

Vk
j+1 =Vk

j+
! "#$

# t( )2
" Vk+1

j +Vk-1
j % 2Vk

j( ) .    (3.11) 

Introducing the notation ! =
" #$%

$t( )2
, we rewrite the 

last equation in the form 

Vk
j+1 =!Vk+1

j +!Vk-1
j + 1" 2!( )Vkj .     (3.12) 

From the theory of the stability of difference 
schemes [25] it is known that the difference scheme is 
absolutely stable at ! <1/ 2 . To use equation (3.12) in 
the boundary conditions must be set as the smoothing 
procedure. In this case, these terms are defined as 
follows. 

Let smoothing is carried out for a series of dots in M 
length. Then, at each step of the extreme values of 
smoothing iterations k =1  and k =M are calculated 
according to the formulas 

V1
j+1 = 1! 2"( )V1j + 2"V2j , VMj+1 = 1! 2"( )VMj + 2"VM-1j . (3.13) 

Iteration of these equations, i.e. calculation on th 
new "relaxation" of the signal Vk

j+1  values j +1( ) -of the 

values of step Vk
j  (taken when the signal V t( ) ) itself) 

provides a low-frequency component VR . The high-
frequency component is obtained as the difference 
VF =V !VR . 

Construct the image S f( )  dvulogarifmicheskoy 

scale ( logS f( ), log f ) (Figure 6 [9]). 

 
Figure 6: The asymptotic behavior of the power spectrum 
S f( )  at high and low frequencies. 

If for some f  have S f( ) < 0 , instead S f( )  of being 

considered S f( ) . 

We have the following asymptotic representation 

S f( )!
1/ f n , ec"u f >> f0,
S 0( ), ec"u f << f0 .

#
$
%

&%
     (3.14) 

Here 

f0 =1/ 2! "T0( ) ,      (3.15) 

T0- defines a characteristic time within which 
realized the relationship of the measured dynamic 
variable V t( ) ; dimensionless parameter n  effectively 
determines the way in which this relationship is lost as 
to reduce the frequency values f0 . 

From Figure 6 that is f0  approximately equal f0
* , to 

the frequency from which ceases to stabilize S f( )  
around a certain constant S 0( ) . 

The singular component Ss f( )  of an experimental 

power spectrum S f( )  is calculated according to the 

formulas (3.3) - (3.4) with replacement ! t( )  
autocorrelator, calculated by the formula [9]: 



Synchronization and Intermittency of Type I in the Oscillator Model Journal of Cardiology and Therapeutics, 2016, Vol. 4, No. 2      47 

!s m"( ) = 1
N #m"

VS k( )VS k +m"( )+
VR k( )VS k +m"( )+VS k( )VR k +m"( )

$

%
&
&

'

(
)
)k=1

N#m"

* ,  

 m! = 0,1,…,M "1( )       (3.16) 

In the low-frequency limit 2! fT0 <<1  for the singular 
component Ss f( )  is useful interpolation formula [9]  

Ss f( ) !
Ss 0( )

1+ 2" fT0( )n0
      (3.17) 

As approximate value of parameter Ss 0( )  in the 
low-frequency area of a function graph (or) preceding a 
frequency interval in which there are considerable 
changes of this dependence in double logarithmic scale 
some value S* 0( )  which is given sense of parameter 

Ss 0( )  in interpolation expression (3.17) [26]. We 

believe that in Ss f( ) < Ss* 0( )  the area 2! fT0 <1  . 

The parameters T0  and n0  the interpolation 
relationship (3.17) for occasional bursts contribution to 
the S f( )  (or S f( ) )) is defined by the matching 

condition (using the least squares method) range S f( )  
on the right side of (3.17). To do this, we use the 
following algorithm [27]. 

Algorithm 3.1. 

We introduce, SS
! 0( ) , RSS! =1010 , ! = 0 . 

1. Setting Ss 0( ) := Ss! 0( )  andassessment T0  and  

Consider the regression 

y = ax+b,        (3.18) 

where y= ln
Ss 0( )
Ss f( )

!1, x= ln2" f , a = n0, b = n0lnT0  

According to the OLS â , b̂  estimate, we find the 

valuation n̂0 = â , T̂0 = exp
b̂
â

!

"
##
$

%
&& . 

2. We calculate the regression (3.18) is the sum of 
squared residuals (residual squares sum - RSS): 

RSS 1( ) = ym ! âxm + b̂( )"
#

$
%

m=0

M!1

&
2

 

Where ym  and xm  appropriate frequencies fm =
m

M ! "t
 

if RSS 1( ) < RSS! , то RSS! := RSS 1( ) , n0
!: = n̂0 , T0

! := T̂0 . 

3. shallow estimate Ss 0( ) := Ss! 0( ) , n0
!:= n̂0 , estimate 

T0 .  

Consider the regression 

y = ax+b b = 0( )       (3.19) 

Where y=
Ss 0( )
Ss f( )

!1
1/n0

, x=2" f , a =T0  

by OLS â  estimate is appreciated T̂0 = â . 

4. We calculate the regression (3.19) 

RSS 2( ) = ym ! âxm[ ]
m=0

M!1

"
2

 

If RSS 2( ) < RSS! , in fact RSS! := RSS 2( ) , T0
! :=T0 .  

5. Believing, Ss 0( ) := Ss! 0( ) , T0 :=T0
! , we estimate n0 . 

Consider the regression 

y = ax+b b = 0( ) ,      (3.20) 

where 

 y= ln
Ss 0( )
Ss f( )

!1, x= ln 2" fT
0( ), a = n0  

by OLS â  -estimate is appreciated n̂0 = â . 

6. We calculate the regression (3.20)  

RSS 3( ) = ym ! âxm[ ]
m=0

M!1

"
2

  

If RSS 3( ) < RSS! , in fact RSS! := RSS 3( ) , n0 := n̂0 . 

7. Assuming T0 :=T0
! , n0 := n̂0  estimate SS 0( ) . 

Consider the regression 

y = ax+b b = 0( ) ,      (3.21) 

where y= Ss f( ) , x=
1

1+ 2! fT0( ) n0
, a = SS 0( ) . 

According to the OLS â  estimate is appreciated 
SS 0( ) = â  . 
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8. Calculate the regression (3.21) 

RSS 4( ) = ym ! âxm[ ]
m=0

M!1

"
2

 

If RSS 4( ) < RSS*( )! Ŝs 0( ) " Ss* 0( )( ) , то RSS! := RSS 4( ) , 

Ss
* 0( ) = ˆ̂Ss 0( ) , ! := ! +1 . 

9. If ! <10 , then go to step 1. 

10. Print SS
! 0( ), T0*, n0*, RSS*  

11. END. 

Thus, formula (3.17) can be written as 

S
s
f( )!

Ss 0( )
1+ 2" fT

0

*( ) n0

*

.      (3.22) 

Applying the algorithm 3.1 the scalar dynamic signal 
V t( ) = x t( ) , where x t( )  - the solution of equation (2.1), 

you can take the value T0
*  of the time of reinjection, 

since the main contribution to the yields S f( )  are 

usually singular component with Ss f( )  a small 
amplitude low-frequency component of the signal 
VR t( ) . 

4. IDENTIFICATION OF THE OSCILLATOR 
PARAMETERS OF THE VAN DER POL 
OSCILLATOR USING WAVELET ANALYSIS 

Any function f t( )  square integrable R = !","( )  in 
the space can be expanded at a given level of 
resolution j = j0  in the wavelet series [28,29] 

f t( ) = s j0 ,k ! j0 ,k
t( )

k
" + dj ,k # j ,k t( )

k
"

j$ j0

" ,      (4.1) 

Where 

! j ,k t( ) = 2 j /2! 2 j t " k( ) , ! j ,k t( ) = 2 j /2! 2 j t " k( ) .     (4.2) 

As introduced, ! t( )  and ! t( )  we will take 

Daubechies [30] scaling (scale) !M t( )  wavelet basis 

function M! t( )  and defined by the equations: 

! t( ) = 2 " hk! 2t # k( )
k=0

2M#1

$ , % t( ) = 2 " gk! 2t # k( )
k=0

2M#1

$ ,(4.3) 

Where gk = !1( )k "h2M!k!1 , M- positive integer. 

Within the framework of multiresolution analysis 
(MRA) [31] functions ! j ,k t( )  and ! j ,k t( )  serve as a 
high-frequency and low-frequency filters, RHR, 
respectively hk . The general properties of the scaling 
functions and wavelet coefficients are uniquely 
determined. Example of calculation for Daubechies 
D4( )  wavelet is given in [28]. 

For Daubechies hk  wavelets are real and  

s j ,k = f ,! j ,k , dj ,k = f ," j ,k  ,       (4.4) 

where for any f1 t( )  and f2 t( )  ( L2 R( )  ( L2 R( ) - space of 
square-integrable functions on R  

f1, f2 = f1 t( ) f2 t( )dt
R
! .         (4.5) 

Using formulas fast wavelet transform (FWT) 

s j ,n = hk ! s j"1,2n+k
k=0

2M"1

# , dj ,n = gk ! s j"1,2n+k
k=0

2M"1

# .     (4.6) 

When time signal f ! L2 R( )  analysis should 
choose the thinnest scale to the subsequent signal 
synthesis receive it in its original form. We can assume 
that such a scale is associated with the level of 
permissions j = 0 . Therefore, the analysis begins with 
the calculation 

s0,k := f ,!o,k = f t( )! t " k( )dt
R
# .       (4.7) 

These values can be calculated, for example by 
means of numerical integration. In the case where f  

the initially set as a discrete array f k( ){ } , k ! Z  ( Z - 
set of integers), just suppose 

s0,k := f k( ), k ! Z .        (4.8) 

Applying FWT (4.7), we can now calculate all the 
factors s j ,n , dj ,n . 

Let's consider action of the operator 

T n( ) =
dn

dt n
n !1( )

 
on function f t( ) , t ! R , within MRA 

in L2 R( ) . Let's designate matrix elements of this 
operator through.  

TSS
n( ) j,k; j, !k( ) , TSD

n( ) j,k; j, !k( ) , TDS
n( ) j,k; j, !k( ) , 

TDD
n( ) j,k; j, !k( ) . Here  
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TSS
n( ) j,k; j, !k( ) = " j ,k t( ) T

n( )" j , !k t( )( )dt,
R
#       (4.9) 

replacement of the lower indices S!D D! S( )  in 
the left side of (4.9) corresponds to the substitution 
! "# #"!( )  of the integral sign on the right side. We 

denote further rj ,l; j , !l
n( ) =TSS

n( ) j,l; j, !l( ), rk
n( ) =TSS

n( ) 0,0;0,k( ) . 

Obviously, where rj ,k
k( ) = rj ,0; j ,k

k( ) . 

Elements rj ,k
n( )  of the same level are related 

rj ,k
n( ) = 2 hi !hm ! rj ,2k"i+m

n( )

m=0

L

# , L = 2M "1( )
i=0

L

# ,   (4.10) 

and the elements adjacent levels – ratio 

rj+1,l; j+1, !l
n( ) = 2n " rj ,l; j , !l

n( ) .     (4.11) 

Conditions normalization coefficients r0,k
n( )  is 

determined as [28] 

k ! r0,k
n( ) = n!

k=1

L

" .      (4.12) 

If j = 0  (4.10) for the value of r0,k
n( )  (the rk

n( ) ) we 
obtain the system of equations 

 
rk
n( ) = 2 hi !hm ! r2k"i+m

n( )

m=0

L

# , k = 0,1,…,L " 2( )
i=0

L

# .  (4.13) 

In the domain of the L  wavelet coefficients rk
n( )  in 

length have the symmetry property 

 rk
n( ) = !1( )k " r!k

n( ) k =1,2,…( ) .    (4.14) 

Given a !L " n  !L = L "1( )  system of linear algebraic 
equations (LAE) (4.12-4.14) has a unique exact 
solution 

 
u = r0

n( ),r1
n( ),…,rL!2

n( )( ) . The matrix elements of the 

differentiation operator recurrently expressed in terms 
of matrix elements of the operator of differentiation 

T n!1( ) =
dn!1

dt n!1
 [32], when they are given below. 

Solving Systems (4.12) - (4.14) n =1  for all matrix 
elements r0,l;0, !l

k( ) = rk
1( )

k= !l "l  can be recovered from the 

elements. TSS
1( ) j,l; j, !l( ) = rj ,l; j , !l

1( ) j "1( )  Using the 
recurrence relation (4.11). The remaining matrix 
elements are n =1  defined as follows. By implementing 
the equivalent of (4.10) in the n =1  expression  

TSS
1( ) j,l; j, !l( ) = 2 hi "hm " rj ,2l+i; j ,2 !l +m

m=0

L

#
i=0

L

#     (4.15) 

replacement indexes S!D  and respective substitute 
h! g , obtain for all j ! 0  presentation 

TSD
1( ) j,l; j, !l( ) = 2 hi " gm " rj ,2l+i; j ,2 !l +m

1( )

m=0

L

#
i=0

L

# ,

TDS
1( ) j,l; j, !l( ) = 2 gi "hm "

m=0

L

#
i=0

L

# rj ,2l+i; j ,2 !l +m
1( ) ,

TDD
1( ) j,l; j, !l( ) = 2 gi " gm "

m=0

L

#
i=0

L

# rj ,2l+i; j ,2 !l +m
1( ) .

   (4.16) 

Let f t( )  represented as g t( ) =T n( ) f t( )  a series of 

wavelet coefficients f s j ,k; f d j ,k( )  
and g s j ,k; g d j ,k( ) . Then 

g s j ,k = TSS
n( ) j,k; j, !k( ) " f s j , !k +TSD

n( ) j,k; j, !k( ) " f d j , !k( )
!k =0

L

# ,

g d j ,k = TDS
n( ) j,k; j, !k( ) " f s j , !k +TDD

n( ) j,k; j, !k( ) " f d j , !k( )
!k =0

L

# .
  (4.17) 

The matrix elements are n = 2  connected to the 
matrix elements n =1  by relations with 

TSS
2( ) j,k; j,k2( ) =

TSS
1( ) j,k; j,k1( ) !TSS

1( ) j,k; j,k2( )
+TSS

1( ) j,k; j,k1( ) !TDS
1( ) j,k; j,k2( )

"

#

$
$

%

&

'
'

k1=0

L

( ,

TSD
2( ) j,k; j,k2( ) =

TSS
1( ) j,k; j,k1( ) !TSD

1( ) j,k; j,k2( )
+TSD

1( ) j,k; j,k1( ) !TDD
1( ) j,k; j,k2( )

"

#

$
$

%

&

'
',

)k =0

L

(

TDS
2( ) j,k; j,k2( ) =

TDS
1( ) j,k; j,k1( ) !TSS

1( ) j,k; j,k2( )
+TDD

1( ) j,k; j,k1( ) !TDS
1( ) j,k; j,k2( )

"

#

$
$

%

&

'
',

)k =0

L

(

TDD
2( ) j,k; j,k2( ) =

TDS
1( ) j,k; j,k1( ) !TSD

1( ) j,k; j,k2( )
+TDD

1( ) j,k; j,k1( ) !TDD
1( ) j,k; j,k2( )

"

#

$
$

%

&

'
'.

)k =0

L

(

  (4.18) 

Replacing in the equation (1.11) oscillator Van der 
Pol x t( ), dx / dt  and d 2x / dt 2 expansions in the wavelet 
basis with the carrier. Applying the formula of 
differentiation of (4.12) and taking t  the points 

 k = 0,1,…,L , we get in the parameter !  type LAE 

A! = b         (4.19) 

where  A = a0,a1,…,aL( )T - the vector of one element ! , 

 b = b0,b1,…,bL( )T T - a sign of transposition. 

Overdetermined system (4.19) does not have an 
exact solution, so instead of an exact solution is 
organized search of the vector !  that will best meet all 
the equations of the system (4.19), ie, minimize the 
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residual (the difference between the vector A!  and 
the vector), ie A!"b #min . Such a solution can be 
obtained by lsolve function MATHCAD system. 

hus, the calculation of the original signal wavelet 
coefficients using fast wavelet transform and 
application of the formulas of differentiation of the 
discrete wavelet decomposition reduces the problem of 
determining the oscillator parameters directly to solving 
a system of linear algebraic equations directly in the 
space of wavelet coefficients, which significantly 
increases the speed of calculations in comparison with 
method of direct and inverse wavelet transforms. This 
approach has undoubted advantages compared with 
the numerical x t( )  signal by differentiating the 
approximate mathematical formulas. In addition, if the 
signal to be analyzed is added to normally distributed 
random process, the formal application of numerical 
formulas differen¬tsirovaniya based on Newton 
interpolation polynomials leads to large errors 
estimates for the derivatives, as shown in [16]. based 
wavelet approach provides at least an order of 
magnitude less than the magnitude of error, and this 
error can be reduced even further by a suitable choice 
of wavelet basis. The apparent advantage of wavelet 
perobrazovaniya is the ability to eliminate the incorrect 
operation of the numerical differentiation of noisy time 
series by moving into the space of wavelet coefficients 

5. SYNCHRONIZATION OF THE NOISE OF AUTO-
OSCILLATIONS IN THE OSCILLATORY PATTERN 
OF THE AVERAGED HEART RATE UNDER THE 
INFLUENCE OF EXTERNAL PERIODIC 

Example of synchronization of self-oscillations of 
the noise of nonlinear oscillator under the influence of 
periodic external force is described in [33]. In this paper 
we investigated the capture of the human heart rhythm 
weak periodic signal. During the experiment, the 
subjects were at rest in front of the monitor screen 
while the computer periodically generate acoustic and 
visual cues - both with sound pulses appear on the 
screen of colored squares. 

The response to the impact determined by ECG, a 
release in a standard way. It is well known that every 
normal cardiac cycle contains a very sharp, well-
isolated peak called R - wave (Figure 7 [10]). the 
spacing between neighboring R - usually peaks is 
taken as the interval between heartbeats 

Naturally, the contraction of the heart - not the 
periodic self-oscillation, and is easy to see that the 
intervals between the beats change significantly over 
time; This variability is well known in physiology. 
Therefore, we can only talk about the middle period 
and heart rate. To estimate the average frequency is 
enough to count the number n  of off R -peak for a 
certain period of time !  and f = n /!  find. 

 
Figure 7: A short segment of the electrocardiogram (ECG) labeled with R-teeth (a) recording the breath and segment (b); both 
signals are in arbitrary units. Phase ECG is a piecewise linear function of time; since the advent of R-wave circles marked (c). 
Respiratory phase obtained through a Hilbert transform (d). 
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R -wave sequence can be viewed as a series of 
point events occurring at a time tk ,  k =1,2,… . The 
phase of this process can be easily calculated. Indeed, 
the time interval between two R  - wave corresponds to 
one of the cardiac cycle when a cycle to understand 
the interval between two nearly identical states 2!  of 
the system. Consequently, the phase increases during 
this interval exactly. Thus, the tk  times may be 
attributed to phase values ! tk( ) = 2"k  and random 
points in time tk < t < tk+1  to determine the phase by a 
linear interpolation between these values: 

! t( ) = 2"k + 2" t # tk
tk+1 # tk

        (5.1) 

As described in [10] experiments, the frequency of 
the test rate f0 , without affecting initially determined. 
Then subjected to external stimulation test with 
different f  frequencies 0,75!1,25( ) f0  from one test to 

another. The resulting curves the difference F ! f0( ) / f0  
in the observed frequency f / f0  of the detuning is 
shown in Figure 8 [10]. 

Shelf near f ! f0  Figure 8, although not perfectly 
horizontal, it indicates the seizure frequency. 

 
Figure 8: The observed average frequency F heart rate as a 
function of frequency f weak external stimulus. This 
experimental curve corresponds to the curve of the frequency 
difference of detuning for the noise of oscillation with the 
external force. 

Type I intermittency phenomenon investigated for 
RR -intervals in previous studies [34,35]. The transition 
from the regular state of the process to chaos through 
intermittency of type I is characterized by the 
manifestation of the phenomenon of self-organized 
criticality (SOC), or, as they say, weak chaos, leading 
to system instability and flicker noise with power 
spectrum RR -intervals nature of power. This behavior -
intervalogrammy is a diagnostic feature that allows to 
distinguish the main syndromes of the cardiovascular 
system. 
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