Heat Shock Proteins as Target for the Induction of Antigen-Specific Tolerance in Rheumatoid Arthritis and other Chronic Inflammatory Diseases

Authors

  • Ariana Barberá Department of Pathology, University of Cambridge, Cambridge, UK and Infectious Diseases and Immunology Department, Faculty of Veterinary Medicine. University of Utrecht, Utrecht, The Netherlands
  • Femke Broere Infectious Diseases and Immunology Department, Faculty of Veterinary Medicine. University of Utrecht, Utrecht, The Netherlands
  • Willem van Eden Infectious Diseases and Immunology Department, Faculty of Veterinary Medicine. University of Utrecht, Utrecht, The Netherlands

DOI:

https://doi.org/10.12970/2310-9874.2015.03.02.3

Keywords:

 Immunological tolerance, regulatory T cells, CD4 T cells, antigen- specific therapies, rheumatoid arthritis.

Abstract

The critical causative factor of chronic inflammatory diseases such as rheumatoid arthritis (RA) is the faulty regulation of self-tolerance. Despite good results in patients that do respond to potent immunosuppressive therapies, in most of the cases only partial responses are achieved leaving them unduly susceptible to risks, such as infections. More importantly, immunosuppressive measures do not alter the basic condition, so that disease returns when therapy is halted. Antigen-specific therapies may represent a better and more physiological approach for manipulating the immune response avoiding the generalized immune suppression in patients and possibly leading to a state of permanent disease remission. The selection of auto-antigens without necessarily being the initiator of disease and with the ability to induce regulatory T cells is crucial for the development of antigen-specific therapies. Heat Shock Proteins (HSPs) are up-regulated during inflammation and HSP-responses are immuno-dominant. HSP-derived peptides have proved to be able to produce a shift from a pro-inflammatory to a tolerogenic phenotype in pathogenic T cells and endogenous HSP have been shown to act as targets for anti-inflammatory Tregs that control disease without general immune suppression.

References

Bluestone JA and Bour-Jordan H. Current and Future Immunomodulation Strategies to Restore Tolerance in Autoimmune Diseases. Cold Spring Harb Perspect Biol 2012; 4: a007542. http://dx.doi.org/10.1101/cshperspect.a007542

Bluestone JA. Mechanisms of tolerance. Immunol Rev 2011; 241: 5-19. http://dx.doi.org/10.1111/j.1600-065X.2011.01019.x

Anderson MS and Su MA. Aire and T cell development. Curr Opin Immunol 2011; 23: 198-206. http://dx.doi.org/10.1016/j.coi.2010.11.007

Smilek DE, Ehlers MR and Nepom GT. Restoring the balance: immunotherapeutic combinations for autoimmune disease. Dis Model Mech 2014; 7(5): 503-13. http://dx.doi.org/10.1242/dmm.015099

Abbas AK, Benoist C, Bluestone JA, et al. Regulatory T cells: recommendations to simplify the Nomenclature. Nat Immunol 2013; 14(4): 307-8. http://dx.doi.org/10.1038/ni.2554

Jordan MS, Boesteanu A, Reed AJ, et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2001; 2: 301-306. http://dx.doi.org/10.1038/86302

Sakaguchi S, Yamaguchi T, Nomura T and Ono M. Regulatory T Cells and Immune Tolerance. Cell 2008; 133: 775-87. http://dx.doi.org/10.1016/j.cell.2008.05.009

Ohkura N, Hamaguchi M, Morikawa H, et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 2012; 37: 785-99. http://dx.doi.org/10.1016/j.immuni.2012.09.010

Corthay A. How do Regulatory T Cells Work? Scand J Immunol 2009; 70: 326-36. http://dx.doi.org/10.1111/j.1365-3083.2009.02308.x

Liu W, Putnam AL, Xu-Yu Z, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4 + T reg cells. JEM 2006; 203: 1701-11. http://dx.doi.org/10.1084/jem.20060772

Sakaguchi S, Wing K, Onishi Y, et al. Regulatory T cells: how do they suppress immune responses? Int Immunol 2009; 21(10): 1105-11. http://dx.doi.org/10.1093/intimm/dxp095

Paust S, Lu L, McCarty N and Cantor H. Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. PNAS 2004; 101: 10398. http://dx.doi.org/10.1073/pnas.0403342101

Grohmann U, Orabona C, Fallarino F, et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 2002; 3: 1097. http://dx.doi.org/10.1038/ni846

Oderup C, Cederbom L, Makowska A, et al. Cytotoxic T lymphocyte antigen-4-dependent down-modulation of costimulatory molecules on dendritic cells in CD4+ CD25+ regulatory T-cell-mediated suppression. Immunology 2006; 118: 240-9. http://dx.doi.org/10.1111/j.1365-2567.2006.02362.x

Cao X, Cai SF, Fehniger TA, et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 2007; 27(4): 635-46. http://dx.doi.org/10.1016/j.immuni.2007.08.014

Gondek DC, Lu LF, Quezada SA, et al. Cutting edge: contact-mediated suppression by CD4+ CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol 2005; 174(4): 1783-6. http://dx.doi.org/10.4049/jimmunol.174.4.1783

Pandiyan P, Zheng L, Ishihara S, et al. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 2007; 8(12): 1353-62. http://dx.doi.org/10.1038/ni1536

Okoye IS, Coomes SM, Pelly VS, et al. MicroRNA-Containing T-Regulatory-Cell-Derived Exosomes Suppress Pathogenic T Helper 1 Cells. Immunity 2014; 41(1): 89-103. http://dx.doi.org/10.1016/j.immuni.2014.05.019

Gravano DM and Vignali DA. The battle against immunopathology: infectious tolerance mediated by regulatory T cells. Cell Mol Life Sci 2012; 69(12): 1997-2008. http://dx.doi.org/10.1007/s00018-011-0907-z

Curotto de Lafaille MA and Lafaille JJ. Natural and adaptive Foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 2009; 30(5): 626-35. http://dx.doi.org/10.1016/j.immuni.2009.05.002

Pratt AG, Isaacs JD, Mattey DL. Current concepts in the pathogenesis of early rheumatoid arthritis. Best Pract Res Clin Rheumatol 2009; 23(1): 37-48. http://dx.doi.org/10.1016/j.berh.2008.08.002

McInnes IB and Schett G. The Pathogenesis of Rheumatoid Arthritis. N Engl J Med 2011; 365: 2205-19. http://dx.doi.org/10.1056/NEJMra1004965

Roudier J. Association of MHC and rheumatoid arthritis. Association of RA with HLA-DR4: the role of repertoire selection. Arthritis Res 2000; 2: 217-20. http://dx.doi.org/10.1186/ar91

Gregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis: an approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 1987; 30: 1205-13. http://dx.doi.org/10.1002/art.1780301102

Bläβ S, Engel JM, Burmester GR. The immunologic homunculus in rheumatoid arthritis. Arthritis Rhem 1999; 42: 2499-506. http://dx.doi.org/10.1002/1529-0131(199912)42:12<2499::AID-ANR1>3.0.CO;2-R

Schett G, Elewaut D, McInnes IB, et al. Toward a cytokine-based disease taxonomy. Nat Med 2013; 19 (7): 822-3. http://dx.doi.org/10.1038/nm.3260

Kallberg H, Padyukov L, Plenge RM, et al. Gene-gene and gene-environment interactions involving HLA-DRB1, PTPN22, and smoking in two subsets of rheumatoid arthritis. Am J Hum Genet 2007; 80: 867-75. http://dx.doi.org/10.1086/516736

Quinn MA, Gough AK, Green MJ, et al. Anti-CCP antibodies measured at disease onset help identify seronegative rheumatoid arthritis and predict radiological and functional outcome. Rheumatology 2006; 45: 478-80. http://dx.doi.org/10.1093/rheumatology/kei203

Panayi GS. B cells: a fundamental role in the pathogenesis of rheumatoid arthritis? Rheumatology 2005; 44 Suppl 2: ii3-ii7. http://dx.doi.org/10.1093/rheumatology/keh616

Chabaud M, Fossiez F, Taupin JL, Miossec P. Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. J Immunol 1998; 161: 409-14.

Miossec P, Korn T, Kuchroo VK. IL-17 and type 17 helper T cells. N Engl J Med 2009; 361: 888-98. http://dx.doi.org/10.1056/NEJMra0707449

Boissier MC, Assier E, Falgarone G, Bessis N. Shifting the imbalance from Th1/Th2 to Th17/treg: the changing rheumatoid arthritis paradigm. Joint Bone Spine 2008; 75(4): 373-5. http://dx.doi.org/10.1016/j.jbspin.2008.04.005

Pasare C, Medzhitov R. Toll pathway dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 2003; 299 (5609): 1033-6. http://dx.doi.org/10.1126/science.1078231

Valencia X, Stephens G, Goldbach- Mansky R, et al. TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood 2006; 108(1): 253-61. http://dx.doi.org/10.1182/blood-2005-11-4567

Cao D, Malmstrom V, Baecher-Allan C, et al. Isolation and functional characterization of regulatory CD25 bright CD4+ T cells from the target organ of patients with rheumatoid arthritis. Eur J Immunol 2003; 33(1): 215-23. http://dx.doi.org/10.1002/immu.200390024

Ehrenstein MR, Evans JG, Singh A, et al. Compromised Function of Regulatory T Cells in Rheumatoid Arthritis and Reversal by Anti-TNF Therapy. JEM 2004; 200(3): 277-85. http://dx.doi.org/10.1084/jem.20040165

Bottini N and Firestein GS. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat Rev Rheumatol 2013; 9(1): 24-33. http://dx.doi.org/10.1038/nrrheum.2012.190

Jung M, Kim KW, Yang CW, et al. Cytokine-Mediated Bone Destruction in Rheumatoid Arthritis. J Immunol Res 2014; 2014: 263625. http://dx.doi.org/10.1155/2014/263625

Karmakar S, Kay J, and Gravallese EM. Bone Damage in Rheumatoid Arthritis. Mechanistic Insights and Approaches to Prevention. Rheum Dis Clin North Am 2010; 36(2): 385-404. http://dx.doi.org/10.1016/j.rdc.2010.03.003

Aggarwal S, Ghilardi N, Xie MH, et al. IL-23 promotes a distinct CD4 T cell activation state characterized by the production of IL-17. J Biol Chem 2003; 278(3): 1910-4. http://dx.doi.org/10.1074/jbc.M207577200

Srirangan S and Choy EH. The Role of IL 6 in the Pathophysiology of Rheumatoid Arthritis. Ther Adv Musculoskelet Dis 2010; 2(5): 247-56. http://dx.doi.org/10.1177/1759720X10378372

Taylor PC and Feldmann M. Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat Rev Rheumatol 2009; 5: 578-82. http://dx.doi.org/10.1038/nrrheum.2009.181

Malaviya AP and Ostor AJK. Rheumatoid arthritis and the era of biologic therapy. Inflammopharmacol 2012; 20: 59-69. http://dx.doi.org/10.1007/s10787-012-0123-y

Rubbert-Roth A. Assessing the safety of biologic agents in patients with rheumatoid arthritis. Rheumatology 2012; 51: v38-47. http://dx.doi.org/10.1093/rheumatology/kes114

García G, Komagata Y, Slavin AJ, et al. Suppression of collagen- induced arthritis by oral or nasal administration of type II collagen. J Autoimm 1999; 13(3): 315-24. http://dx.doi.org/10.1006/jaut.1999.0320

Prakken BJ, Roord S, van Kooten PJ, et al. Inhibition of adjuvant-induced arthritis by IL-10-driven regulatory cells induced via nasal administration of a peptide analog of an arthritis-related heat-shock protein 60 T cell epitope. Arthritis Rheum 2002; 46(7): 1937-46. http://dx.doi.org/10.1002/art.10366

Zonneveld-Huijssoon E, Roord ST, de Jager W, et al. Bystander suppression of experimental arthritis by nasal administration of a heat shock protein peptide. Ann Rheum Dis 2011; 70(12): 2199-206. http://dx.doi.org/10.1136/ard.2010.136994

Pop SM, Wong CP, He Q, et al. The type and frequency of immunoregulatory CD4+ T cells govern the efficacy of antigen-specific immunotherapy in non obese diabetic mice. Diabetes 2007; 56(5): 1395-402. http://dx.doi.org/10.2337/db06-0543

Hultkrantz S, Ostman S, Telemo E. Induction of antigen-specific regulatory T cells in the liver-draining celiac lymph node following oral antigen administration. Immunology 2005; 116(3): 362-72. http://dx.doi.org/10.1111/j.1365-2567.2005.02236.x

Mizrahi M and Ilan Y. The gut mucosa as a site for induction of regulatory T-cells. Curr Pharm Des 2009; 15(11): 1191-202. http://dx.doi.org/10.2174/138161209787846784

Battaglia M, Gianfrani C, Gregori S, Roncarolo MG. IL-10-producing T regulatory type 1 cells and oral tolerance. Ann N Y Acad Sci 2004; 1029: 142-53. http://dx.doi.org/10.1196/annals.1309.031

Min SY, Park KS, Cho ML, et al. Antigen-induced, tolerogenic CD11c+,CD11b+ dendritic cells are abundant in Peyer’s patches during the induction of oral tolerance to type II collagen and suppress experimental collagen-induced arthritis. Arthritis Rheum 2006; 54(3): 887-98. http://dx.doi.org/10.1002/art.21647

Masteller EL, Tang Q and Bluestone JA. Antigen-specific regulatory T cells—Ex vivo expansion and therapeutic potential. Semin Immunol 2006; 18: 103-10. http://dx.doi.org/10.1016/j.smim.2006.01.004

Tang Q, Henriksen KJ, Bi M, et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. JEM 2004; 199: 1455-65. http://dx.doi.org/10.1084/jem.20040139

Tarbell KV, Yamazaki S, Olson K, et al. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide suppresses autoimmune diabetes. JEM 2004; 199: 1467-77. http://dx.doi.org/10.1084/jem.20040180

Joosten LA, Coenen-de Roo CJ, Helsen MM, et al. Induction of tolerance with intranasal administration of human cartilage gp 39 in DBA/1 mice: amelioration of clinical, histologic, and radiologic signs of type II collagen-induced arthritis. Arthritis Rheum 2000; 43: 645-55. http://dx.doi.org/10.1002/1529-0131(200003)43:3<645::AID-ANR22>3.0.CO;2-O

Kim WU, Cho ML, Jung YO, et al. Type II collagen autoimmunity in rheumatoid arthritis. Am J Med Sci 2004; 327: 202-11. http://dx.doi.org/10.1097/00000441-200404000-00006

Landewe RB, Houbiers JG, Van den Bosch F, et al. Intranasal administration of recombinant human cartilage glycoprotein-39 as a treatment for rheumatoid arthritis: a phase II, multicentre, double-blind, randomized, placebo controlled, parallel-group, dose-finding trial. Ann Rheum Dis 2010; 69(9): 1655-9. http://dx.doi.org/10.1136/ard.2009.117234

McKown KM, Carbone LD, Kaplan SB, et al. Lack of efficacy of oral bovine type II collagen addedto existing therapy in rheumatoid arthritis. Arthritis Rheum 1999; 42(6): 1204-8. http://dx.doi.org/10.1002/1529-0131(199906)42:6<1204::AID-ANR17>3.0.CO;2-U

Vanderlugt CL and Miller SD. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol 2002; 2(2): 85-95. http://dx.doi.org/10.1038/nri724

van Eden W, van der Zee R, Prakken B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 2005; 5(4): 318-30. http://dx.doi.org/10.1038/nri1593

Boog CJ , de Graeff-Meeder ER, Lucassen MA, et al. Two monoclonal antibodies generated against human hsp60 show reactivity with synovial membranes of patients with juvenile chronic arthritis. JEM 1992; 175 (6): 1805-10. http://dx.doi.org/10.1084/jem.175.6.1805

Huang QQ, Sobkoviak R, Jockheck-Clark, et al. Heat shock protein 96 is elevated in rheumatoid arthritis and activates macrophages primarily via TLR2 signaling. J Immunol 2009; 182: 4965-73. http://dx.doi.org/10.4049/jimmunol.0801563

Puga Yung GL, Fidler M, Albani E, et al. Heat shock protein-derived T-cell epitopes contribute to autoimmune inflammation in pediatric Crohn’s disease. PLoS ONE 2009; 4: e7714. http://dx.doi.org/10.1371/journal.pone.0007714

de Graeff-Meeder ER, van Eden W, Rijkers GT, et al. Juvenile Chronic Arthritis: T Cell Reactivity to Human HSP60 in Patients with a Favorable Course of Arthritis. J Clin Invest 1995; 95: 934-40. http://dx.doi.org/10.1172/JCI117801

Anderton SM, van der Zee R, Prakken B, et al. Activation of T cells recognizing self 60-kD heat shock protein can protect against experimental arthritis. JEM 1995; 181 (3): 943-52. http://dx.doi.org/10.1084/jem.181.3.943

Albani S and Prakken B. T cell epitope-specific immune therapy for rheumatic diseases. Arthritis Rheum 2006; 54: 19-25. http://dx.doi.org/10.1002/art.21520

van Herwijnen MJC, Wieten L, van der Zee R, et al. Regulatory T cells that recognize a ubiquitous stress-inducible self-antigen are long-lived suppressors of autoimmune arthritis. PNAS 2012; 109(35): 14134-14139. http://dx.doi.org/10.1073/pnas.1206803109

Prakken BJ, Samodal R, Le TD, et al. Epitope-specific immunotherapy induces immune deviation of proinflammatory T cells in rheumatoid arthritis. PNAS 2004; 101(12): 4228-33. http://dx.doi.org/10.1073/pnas.0400061101

Koffeman EC, Genovese M, Amox D, et al. Epitope-specific immunotherapy of rheumatoid arthritis: clinical responsiveness occurs with immune deviation and relies on the expression of a cluster of molecules associated with T cell tolerance in a double-blind, placebo-controlled, pilot phase II trial. Arthritis Rheum 2009; 60(11): 3207-16. http://dx.doi.org/10.1002/art.24916

Elias D, Reshef T, Birk OS, et al. Vaccination against autoimmune mouse diabetes with a T-cell epitope of the human 65-kDa heat shock protein. PNAS 1991; 88: 3088-91. http://dx.doi.org/10.1073/pnas.88.8.3088

Zanin-Zhorov A, Nussbaum G, Franitza S, et al. T cells respond to heat shock protein 60 via TLR2: activation of adhesion and inhibition of chemokine receptors. FASEB J 2003; 17: 1567-1569. http://dx.doi.org/10.1096/fj.02-1139fje

Schloot NC and Cohen IR. DiaPep277® and immune intervention for treatment of type 1 diabetes. Clin Immunol 2013; 149: 307-316. http://dx.doi.org/10.1016/j.clim.2013.09.001

Raz I, Ziegler AG, Linn T, et al. Treatment of Recent-Onset Type 1 Diabetic Patients With DiaPep277: Results of a Double-Blind, Placebo-Controlled, Randomized Phase 3 Trial. Diabetes Care 2014; 37(5): 1392-1400. http://dx.doi.org/10.2337/dc13-1391

Pozzilli P, Raz I, Peled D, et al. Evaluation of Long-Term Treatment Effect in a Type 1 Diabetes Intervention Trial: Differences after stimulation with glucagon or a mixed meal. Diabetes Care 2014; 37(5): 1384-91. http://dx.doi.org/10.2337/dc13-1392

Anderton SM. Peptide-based immunotherapy of autoimmunity: a path of puzzles, paradoxes and possibilities. Immunology 2001; 104(4): 367-76. http://dx.doi.org/10.1046/j.1365-2567.2001.01324.x

Ben-David H, Sela M, Mozes E. Downregulation of myasthenogenic T cell responses by a dual altered peptide ligand via CD4+CD25+-regulated events leading to apoptosis. PNAS 2005; 102(6): 2028-33. http://dx.doi.org/10.1073/pnas.0409549102

Katsara M, Deraos G, Tselios T, et al. Design of novel cyclic altered peptide ligands of myelin basic protein MBP83-99 that modulate immune responses in SJL/J mice. J Med Chem 2008; 51(13): 3971-8. http://dx.doi.org/10.1021/jm8000554

Ben-David H, Venkata Aruna B, Sela M, Mozes E. A dual altered peptide ligand inhibits myasthenia gravis associated responses by inducing phosphorylated extracellular- regulated kinase 1,2 that upregulates CD4+CD25+Foxp3+ cells. Scand J Immunol 2007; 65(6): 567-76. http://dx.doi.org/10.1111/j.1365-3083.2007.01940.x

Zhao J, Li R, He J, et al. Mucosal administration of an altered CII263- 272 peptide inhibits collagen-induced arthritis by suppression of Th1/Th17 cells and expansion of regulatory T cells. Rheumatol Int 2008; 29(1): 9-16. http://dx.doi.org/10.1007/s00296-008-0634-4

Madrenas J, Wange RL, Wang JL, et al. Zeta phosphorylation without ZAP-70 activation induced by TCR antagonists or partial agonists. Science 1995; 267(5197): 515-8. http://dx.doi.org/10.1126/science.7824949

Liu GY and Wraith DC. Affinity for class II MHC determines the extent to which soluble peptides tolerize autoreactive T cells in naive and primed adult mice-implications for autoimmunity. Int Immunol 1995; 7(8): 1255-63. http://dx.doi.org/10.1093/intimm/7.8.1255

Anderton SM and Wraith DC. Hierarchy in the ability of T cell epitopes to induce peripheral tolerance to antigens from myelin. Eur J Immunol 1998; 28(4): 1251-61. http://dx.doi.org/10.1002/(SICI)1521-4141(199804)28:04<1251::AID-IMMU1251>3.0.CO;2-O

Prakken BJ, Roord S, van Kooten PJ, et al. Inhibition of adjuvant-induced arthritis by IL-10-driven regulatory cells induced via nasal administration of a peptide analog of an arthritis-related heat-shock protein 60 T cell epitope. Arthritis Rheum 2002; 46(7): 1937-46. http://dx.doi.org/10.1002/art.10366

Dominguez MC, Lorenzo N, Barbera A, et al. An altered peptide ligand corresponding to a novel epitope from heat-shock protein 60 induces regulatory T cells and suppresses pathogenic response in an animal model of adjuvant-induced arthritis. Autoimmunity 2011; 44(6): 471-82. http://dx.doi.org/10.3109/08916934.2010.550590

Barberá A, Lorenzo N, Garrido G, et al. APL-1, an altered peptide ligand derived from human heat-shock protein 60, selectively induces apoptosis in activated CD4+ CD25+ T cells from peripheral blood of rheumatoid arthritis patients. Int Immunopharmacol 2013; 17(4): 1075-83. http://dx.doi.org/10.1016/j.intimp.2013.10.010

Bielekova B, Goodwin B, Richert N, et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83-99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 2000; 6(10): 1167-75. http://dx.doi.org/10.1038/80516

Kappos L, Comi G, Panitch H, et al. Induction of a non encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. Nat Med 2000; 6(10): 1176-82. http://dx.doi.org/10.1038/80525

Aharoni R, Teitelbaum D, Arnon R, Sela M. Copolymer 1 acts against the immunodominant epitope 82-100 of myelin basic protein by T cell receptor antagonism in addition to major histocompatibility complex blocking. PNAS 1999; 96(2): 634-9. http://dx.doi.org/10.1073/pnas.96.2.634

Penaranda C, Tang Q, Bluestone JA. Anti-CD3 therapy promotes tolerance by selectively depleting pathogenic cells while preserving regulatory T cells. J Immunol 2011; 187: 2015-22. http://dx.doi.org/10.4049/jimmunol.1100713

Roord ST, Zonneveld-Huijssoon E, Le T, et al. Modulation of T cell function by combination of epitope specific and low dose anticytokine therapy controls Autoimmune Arthritis. PloS One 2006; 20 (1): e87. http://dx.doi.org/10.1371/journal.pone.0000087

Bresson D, Togher L, Rodrigo E, et al. Anti-CD3 and nasal proinsulin combination therapy enhances remission from recent-onset autoimmune diabetes by inducing Tregs. J Clin Invest 2006; 116: 1371-81. http://dx.doi.org/10.1172/JCI27191

Bresson D, Fradkin M, Manenkova Y, Rottembourg D, von HM. Genetic-induced variations in the GAD65 T-cell repertoire governs efficacy of anti-CD3/GAD65 combination therapy in new-onset type 1 diabetes. Mol Ther 2010; 18: 307-16. http://dx.doi.org/10.1038/mt.2009.197

Downloads

Published

2015-11-03

Issue

Section

Articles