Protein Kinase Inhibitors in Rheumatology

Authors

  • Sebastián Herrera Uribe Internal Medicine and Rheumatology Section, Universidad de Antioquia, Calle 7 AA No 30-241. Apto 701, Medellín, Antioquia, Colombia
  • Gloria Vásquez Internal Medicine, Rheumatology Section, GICIG, Carrera 53 No 61-30. Laboratorio 410, Medellín, Antioquia, Colombia

DOI:

https://doi.org/10.12970/2310-9874.2014.02.01.4

Keywords:

 Lupus erythematosus, protein kinases, phosphotransferases, Janus Kinase 3, protein kinases inhibitors, rheumatology, autoimmune diseases.

Abstract

Protein kinases have multiple roles in cell biology, many of which are deeply involved in inflammation and immunity. There are currently many treatment options for patients with autoimmune disease, but none that is completely effective. Protein kinase inhibitors are becoming one of the most promising therapeutic groups, not only for the treatment of disease, but for further developing our understanding of different pathologies. The purpose of this paper is to give an introduction to both protein kinases and their inhibitors, with their implications in the management of autoimmune diseases.

References

Bernard O. Lim kinases, regulators of actin dynamics. Int J Biochem Cell Biol 2007; 39: 1071-6. http://dx.doi.org/10.1016/j.biocel.2006.11.011

Grzanka A, Misiołek M, Golusiński W, Jarząb J. Molecular mechanisms of glucocorticoids action: implications for treatment of rhinosinusitis and nasal polyposis. Eur Arch Otorhinolaryngol 2011; 268: 247-53. http://dx.doi.org/10.1007/s00405-010-1330-z

Rhen T, Cidlowski J a. Antiinflammatory action of glucocorticoids--new mechanisms for old drugs. N Engl J Med 2005; 353: 1711-23. http://dx.doi.org/10.1056/NEJMra050541

McElroy SJ, Hobbs S, Kallen M, et al. Transactivation of EGFR by LPS induces COX-2 expression in enterocytes. PLoS One 2012; 7: e38373.

Smeets RL, Fleuren WWM, He X, et al. Molecular pathway profiling of T lymphocyte signal transduction pathways; Th1 and Th2 genomic fingerprints are defined by TCR and CD28-mediated signaling. BMC Immunol 2012; 13: 12. http://dx.doi.org/10.1186/1471-2172-13-12

Lovett DH, Mahimkar R, Raffai RL, et al. A novel intracellular isoform of matrix metalloproteinase-2 induced by oxidative stress activates innate immunity. PLoS One 2012; 7: e34177.

Iqbal J, Zaidi M, Avadhani NG. Cell signaling. Ann N Y Acad Sci 2010; 1211: 3-8. http://dx.doi.org/10.1111/j.1749-6632.2010.05811.x

De Luca A, Maiello MR, D’Alessio A, Pergameno M, Normanno N. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets 2012; 16 (Suppl 2): S17-27.

MacMicking JD. Interferon-inducible effector mechanisms in cell-autonomous immunity. Nat Rev Immunol 2012; 12: 367-82. http://dx.doi.org/10.1038/nri3210

Lieser S a, Aubol BE, Wong L, Jennings P a, Adams J a. Coupling phosphoryl transfer and substrate interactions in protein kinases. Biochim Biophys Acta 2005; 1754: 191-9. http://dx.doi.org/10.1016/j.bbapap.2005.07.024

Chen C-A, Yeh R-H, Yan X, Lawrence DS. Biosensors of protein kinase action: from in vitro assays to living cells. Biochim Biophys Acta 2004; 1697: 39-51. http://dx.doi.org/10.1016/j.bbapap.2003.11.012

Hubbard MJ, Cohen P. On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci 1993; 18: 172-7. http://dx.doi.org/10.1016/0968-0004(93)90109-Z

Taylor SS, Yang J, Wu J, Haste NM, Radzio-Andzelm E, Anand G. PKA: a portrait of protein kinase dynamics. Biochim Biophys Acta 2004; 1697: 259-69. http://dx.doi.org/10.1016/j.bbapap.2003.11.029

Hunter T. Signaling--2000 and beyond. Cell 2000; 100: 113-27. http://dx.doi.org/10.1016/S0092-8674(00)81688-8

Burack WR, Shaw AS. Signal transduction: hanging on a scaffold. Curr Opin Cell Biol 2000; 12: 211-6. http://dx.doi.org/10.1016/S0955-0674(99)00078-2

Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science 2002; 298: 1912-34. http://dx.doi.org/10.1126/science.1075762

Johnson SA, Hunter T. Kinomics: methods for deciphering the kinome. Nat Methods 2005; 2: 17-25. http://dx.doi.org/10.1038/nmeth731

Gomase VS, Tagore S. Kinomics. Curr Drug Metab 2008; 9: 255-8. http://dx.doi.org/10.2174/138920008783884803

Hubbard SR, Till JH. Protein tyrosine kinase structure and function. Annu Rev Biochem 2000; 69: 373-98. http://dx.doi.org/10.1146/annurev.biochem.69.1.373

Miller WT. Tyrosine kinase signaling and the emergence of multicellularity. Biochim Biophys Acta 2012; 1823: 1053-7. http://dx.doi.org/10.1016/j.bbamcr.2012.03.009

Page TH, Smolinska M, Gillespie J, Urbaniak AM, Foxwell BMJ. Tyrosine kinases and inflammatory signalling. Curr Mol Med 2009; 9: 69-85. http://dx.doi.org/10.2174/156652409787314507

Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2010; 141: 1117-34. http://dx.doi.org/10.1016/j.cell.2010.06.011

Hubbard SR, Miller WT. Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol 2007; 19: 117-23. http://dx.doi.org/10.1016/j.ceb.2007.02.010

Hanks SK, Hunter T. The eukaryotic protein kinase superfamily: (catalytic) domain structure and classification. FASEB J 1995; 9: 576-96.

Kornev AP, Taylor SS. Defining the conserved internal architecture of a protein kinase. Biochim Biophys Acta 2010; 1804: 440-4. http://dx.doi.org/10.1016/j.bbapap.2009.10.017

Scheeff ED, Bourne PE. Structural evolution of the protein kinase-like superfamily. PLoS Comput Biol 2005; 1: e49. http://dx.doi.org/10.1371/journal.pcbi.0010049

Noble MEM, Endicott J a, Johnson LN. Protein kinase inhibitors: insights into drug design from structure. Science 2004; 303: 1800-5. http://dx.doi.org/10.1126/science.1095920

Traxler P, Furet P. Strategies toward the design of novel and selective protein tyrosine kinase inhibitors. Pharmacol Ther 1999; 82: 195-206. http://dx.doi.org/10.1016/S0163-7258(98)00044-8

Cohen P. Protein kinases--the major drug targets of the twenty-first century? Nat Rev Drug Discov 2002; 1: 309-15. http://dx.doi.org/10.1038/nrd773

Bain J, McLauchlan H, Elliott M, Cohen P. The specificities of protein kinase inhibitors: an update. Biochem J 2003; 371: 199-204. http://dx.doi.org/10.1042/BJ20021535

Liu J, Farmer JD, Lane WS, Friedman J, Weissman I, Schreiber SL. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 1991; 66: 807-15. http://dx.doi.org/10.1016/0092-8674(91)90124-H

Davies SP, Reddy H, Caivano M, Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 2000; 351: 95-105. http://dx.doi.org/10.1042/0264-6021:3510095

Huse M, Kuriyan J. The conformational plasticity of protein kinases. Cell 2002; 109: 275-82. http://dx.doi.org/10.1016/S0092-8674(02)00741-9

Jenks S a, Sanz I. Altered B cell receptor signaling in human systemic lupus erythematosus. Autoimmun Rev 2009; 8: 209-13. http://dx.doi.org/10.1016/j.autrev.2008.07.047

Peng SL. Altered T and B lymphocyte signaling pathways in lupus. Autoimmun Rev 2009; 8: 179-83. http://dx.doi.org/10.1016/j.autrev.2008.07.040

Jefferies C a, O’Neill L a J. Bruton’s tyrosine kinase (Btk)-the critical tyrosine kinase in LPS signalling? Immunol Lett 2004; 92: 15-22. http://dx.doi.org/10.1016/j.imlet.2003.11.017

Ustun C, DeRemer DL, Akin C. Tyrosine kinase inhibitors in the treatment of systemic mastocytosis. Leuk Res 2011; 35: 1143-52. http://dx.doi.org/10.1016/j.leukres.2011.05.006

Wong WSF, Leong KP. Tyrosine kinase inhibitors: a new approach for asthma. Biochim Biophys Acta 2004; 1697: 53-69. http://dx.doi.org/10.1016/j.bbapap.2003.11.013

Roskoski R. VEGF receptor protein-tyrosine kinases: structure and regulation. Biochem Biophys Res Commun 2008; 375: 287-91. http://dx.doi.org/10.1016/j.bbrc.2008.07.121

Gorelik G, Fang JY, Wu A, Sawalha AH, Richardson B. Impaired T cell protein kinase C delta activation decreases ERK pathway signaling in idiopathic and hydralazine-induced lupus. J Immunol 2007; 179: 5553-63.

Okamoto H, Kobayashi A. Tyrosine kinases in rheumatoid arthritis. J Inflamm 2011; 8: 21. http://dx.doi.org/10.1186/1476-9255-8-21

Iwamoto N, Distler JHW, Distler O. Tyrosine kinase inhibitors in the treatment of systemic sclerosis: from animal models to clinical trials. Curr Rheumatol Rep 2011; 13: 21-7. http://dx.doi.org/10.1007/s11926-010-0142-x

Krishnan S, Chowdhury B, Tsokos GC. Autoimmunity in systemic lupus erythematosus: integrating genes and biology. Semin Immunol 2006; 18: 230-43. http://dx.doi.org/10.1016/j.smim.2006.03.011

Soverini S, Martinelli G, Rosti G, Iacobucci I, Baccarani M. Advances in treatment of chronic myeloid leukemia with tyrosine kinase inhibitors: the evolving role of Bcr-Abl mutations and mutational analysis. Pharmacogenomics 2012; 13: 1271-84. http://dx.doi.org/10.2217/pgs.12.103

Chen Y, Fu L. Mechanisms of acquired resistance to tyrosine kinase inhibitors. Acta Pharm Sin B 2011; 1: 197-207. http://dx.doi.org/10.1016/j.apsb.2011.10.007

Ronkina N, Menon MB, Schwermann J, et al. MAPKAP kinases MK2 and MK3 in inflammation: complex regulation of TNF biosynthesis via expression and phosphorylation of tristetraprolin. Biochem Pharmacol 2010; 80: 1915-20. http://dx.doi.org/10.1016/j.bcp.2010.06.021

Kawagoe T, Sato S, Matsushita K, et al. Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat Immunol 2008; 9: 684-91. http://dx.doi.org/10.1038/ni.1606

Sato S, Sanjo H, Takeda K, et al. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 2005; 6: 1087-95. http://dx.doi.org/10.1038/ni1255

Hayden M, Ghosh S. Shared Principles in NF-κB Signaling. Cell 2008; 3: 344-62. http://dx.doi.org/10.1016/j.cell.2008.01.020

Vallabhapurapu S, Matsuzawa A, Zhang W, et al. Non-redundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol 2009; 9: 1364-70. http://dx.doi.org/10.1038/ni.1678

Natoli G, Saccani S, Bosisio D, Marazzi I. Interactions of NF-kappaB with chromatin: the art of being at the right place at the right time. Nat Immunol 2005; 6: 439-45. http://dx.doi.org/10.1038/ni1196

Wolter S, Doerrie A, Weber A, et al. c-Jun controls histone modifications, NF-kappaB recruitment, and RNA polymerase II function to activate the ccl2 gene. Mol Cell Biol 2008; 28: 4407-23. http://dx.doi.org/10.1128/MCB.00535-07

Gaestel M. MAPKAP kinases - MKs - two’s company, three's a crowd. Nat Rev Mol Cell Biol 2006; 7: 120-30. http://dx.doi.org/10.1038/nrm1834

Yamaoka K, Min B, Zhou Y, Paul WE, Shea JJO. Jak3 negatively regulates dendritic-cell cytokine production and survival. Blood 2005; 106: 3227-33. http://dx.doi.org/10.1182/blood-2005-02-0769

Gaestel M, Kotlyarov A, Kracht M. Targeting innate immunity protein kinase signalling in inflammation. Nat Rev Drug Discov 2009; 8: 480-99. http://dx.doi.org/10.1038/nrd2829

Annis DA, Nazef N, Chuang C, Scott MP, Nash HM. A general technique to rank protein-ligand binding affinities and determine allosteric vs. direct binding site competition in compound mixtures. J Am Chem Soc 2004; 126: 15495-503. http://dx.doi.org/10.1021/ja048365x

Smith IM, Hoshi N. ATP competitive protein kinase C inhibitors demonstrate distinct state-dependent inhibition. PLoS One 2011; 6: e26338. http://dx.doi.org/10.1371/journal.pone.0026338

Moucadel V, Prudent R, Sautel CF, et al. Antitumoral activity of allosteric inhibitors of protein kinase CK2. Oncotarget 2011; 2: 997-1010.

Levitzki A. Protein tyrosine kinase inhibitors as novel therapeutic agents. Pharmacol Ther 1999; 82: 231-9. http://dx.doi.org/10.1016/S0163-7258(98)00066-7

Goldstein DM, Gray NS, Zarrinkar PP. High-throughput kinase profiling as a platform for drug discovery. Nat Rev Drug Discov 2008; 7: 391-8. http://dx.doi.org/10.1038/nrd2541

Breitenlechner CB, Bossemeyer D, Engh R a. Crystallography for protein kinase drug design: PKA and SRC case studies. Biochim Biophys Acta 2005; 1754: 38-49. http://dx.doi.org/10.1016/j.bbapap.2005.09.014

Walters WP, Namchuk M. Designing screens: how to make your hits a hit. Nat Rev Drug Discov 2003; 2: 259-66. http://dx.doi.org/10.1038/nrd1063

Ahn NG, Resing K a. Cell biology. Lessons in rational drug design for protein kinases. Science 2005; 308: 1266-7. http://dx.doi.org/10.1126/science.1113707

Cohen MS, Zhang C, Shokat KM, Taunton J. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science 2005; 308: 1318-21. http://dx.doi.org/10.1126/science1108367

Schechtman D, Mochly-Rosen D. Isozyme-specific inhibitors and activators of protein kinase C. Methods Enzym 2002; 345: 470-89. http://dx.doi.org/10.1016/S0076-6879(02)45039-2

Inagaki K, Chen L, Ikeno F, et al. Inhibition of delta-protein kinase C protects against reperfusion injury of the ischemic heart in vivo. Circulation 2003; 108: 2304-7. http://dx.doi.org/10.1161/01.CIR.0000101682.24138.36

Costa-Junior HM, Suetsugu MJ, Krieger JE, Schechtman D. Specific modulation of protein kinase activity via small peptides. Regul Pept 2009; 153: 11-8. http://dx.doi.org/10.1016/j.regpep.2008.12.002

Dancey J, Sausville E a. Issues and progress with protein kinase inhibitors for cancer treatment. Nat Rev Drug Discov 2003; 2: 296-313. http://dx.doi.org/10.1038/nrd1066

Harre U, Georgess D, Bang H, et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest 2012; 122: 1791-802. http://dx.doi.org/10.1172/JCI60975

Nathan C. Points of control in inflammation. Nature 2002; 420: 846-52. http://dx.doi.org/10.1038/nature01320

Lee MR, Dominguez C. MAP kinase p38 inhibitors: clinical results and an intimate look at their interactions with p38alpha protein. Curr Med Chem 2005; 12: 2979-94. http://dx.doi.org/10.2174/092986705774462914

Dominguez C, Powers DA, Tamayo N. p38 MAP kinase inhibitors: many are made, but few are chosen. Curr Opin Drug Discov Devel 2005; 8: 421-30.

Westra J, Limburg PC. p38 mitogen-activated protein kinase (MAPK) in rheumatoid arthritis. Mini Rev Med Chem 2006; 6: 867-74. http://dx.doi.org/10.2174/138955706777934982

Dambach DM. Potential adverse effects associated with inhibition of p38alpha/beta MAP kinases. Curr Top Med Chem 2005; 5: 929-39. http://dx.doi.org/10.2174/1568026054985911

Sweeney SE, Firestein GS. Mitogen activated protein kinase inhibitors: where are we now and where are we going? Ann Rheum Dis 2006; 65 (Suppl 3): iii83-8. http://dx.doi.org/10.1136/ard.2006.058388

Genovese MC, Cohen SB, Wofsy D, et al. A 24-week, randomized, double-blind, placebo-controlled, parallel group study of the efficacy of oral SCIO-469, a p38 mitogen-activated protein kinase inhibitor, in patients with active rheumatoid arthritis. J Rheumatol 2011; 38: 846-54. http://dx.doi.org/10.3899/jrheum.100602

Cohen SB, Cheng T-T, Chindalore V, et al. Evaluation of the efficacy and safety of pamapimod, a p38 MAP kinase inhibitor, in a double-blind, methotrexate-controlled study of patients with active rheumatoid arthritis. Arthritis Rheum 2009; 60: 335-44. http://dx.doi.org/10.1002/art.24266

Genovese MC. Inhibition of p38: has the fat lady sung? Arthritis Rheum 2009; 60: 317-20. http://dx.doi.org/10.1002/art.24264

Jin N, Wang Q, Zhang X, Jiang D, Cheng H, Zhu K. The selective p38 mitogen-activated protein kinase inhibitor, SB203580, improves renal disease in MRL/lpr mouse model of systemic lupus. Int Immunopharmacol 2011; 11: 1319-26. http://dx.doi.org/10.1016/j.intimp.2011.04.015

Thiel MJ, Schaefer CJ, Lesch ME, et al. Central role of the MEK/ERK MAP kinase pathway in a mouse model of rheumatoid arthritis: potential proinflammatory mechanisms. Arthritis Rheum 2007; 56: 3347-57. http://dx.doi.org/10.1002/art.22869

Singh K, Deshpande P, Pryshchep S, et al. ERK-dependent T-cell receptor threshold calibration in rheumatoid arthritis. J Immunol 2010; 183: 8258-67. http://dx.doi.org/10.4049/jimmunol.0901784

Rowland SL, DePersis CL, Torres RM, Pelanda R. Ras activation of Erk restores impaired tonic BCR signaling and rescues immature B cell differentiation. J Exp Med 2010; 207: 607-21. http://dx.doi.org/10.1084/jem.20091673

Winkler J, Wright D, Pheneger J, et al. ARRY-162, a potent and selective inhibitor of Mek 1/2: preclinical and clinical evidence of activity in arthritis pre-clinical results. Proceeding 9th World Congr. Inflammation, Tokyo, Japan: 2009, p. 301.

Lindstrom TM, Robinson WH. A multitude of kinases--which are the best targets in treating rheumatoid arthritis? Rheum Dis Clin North Am 2010; 36: 367-83. http://dx.doi.org/10.1016/j.rdc.2010.02.005

Sawalha A, Richardson B. MEK/ERK pathway inhibitors as a treatment for inflammatory arthritis might result in the development of lupus. comment on the article by Thiel et al. Arthritis Rheum 2008; 58: 1203-4. http://dx.doi.org/10.1002/art.23382

Chappell WH, Steelman LS, Long JM, et al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget 2011; 2: 135-64.

Dong C, Yang DD, Wysk M, Whitmarsh AJ, Davis RJ, Flavell RA. Defective T cell differentiation in the absence of Jnk1. Science 1998; 282: 2092-5. http://dx.doi.org/10.1126/science.282.5396.2092

Tong C, Yin Z, Song Z, et al. c-Jun NH2-terminal kinase 1 plays a critical role in intestinal homeostasis and tumor suppression. Am J Pathol 2007; 171: 297-303. http://dx.doi.org/10.2353/ajpath.2007.061036

Swanson CDA, Paniagua RT, Lindstrom TM, et al. Tyrosine kinases as targets for the treatment of rheumatoid arthritis. Nat Rev Rheumatol 2012; 5: 317-24. http://dx.doi.org/10.1038/nrrheum.2009.82

Haan C, Kreis S, Margue C, Behrmann I. Jaks and cytokine receptors--an intimate relationship. Biochem Pharmacol 2006; 72: 1538-46. http://dx.doi.org/10.1016/j.bcp.2006.04.013

Haan C, Rolvering C, Raulf F, et al. Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors. Chem Biol 2011; 18: 314-23. http://dx.doi.org/10.1016/j.chembiol.2011.01.012

Ghoreschi K, Laurence A, Shea JJO. Janus Kinases in immune cell signaling. Immunol Rev 2010; 228: 273-87. http://dx.doi.org/10.1111/j.1600-065X.2008.00754.x

Schindler C, Plumlee C. Inteferons pen the JAK-STAT pathway. Semin Cell Dev Biol 2008; 19: 311-8. http://dx.doi.org/10.1016/j.semcdb.2008.08.010

Ihle JN, Gilliland DG. Jak2: normal function and role in hematopoietic disorders. Curr Opin Genet Dev 2007; 17: 8-14. http://dx.doi.org/10.1016/j.gde.2006.12.009

Riese RJ, Krishnaswami S, Kremer J. Inhibition of JAK kinases in patients with rheumatoid arthritis: scientific rationale and clinical outcomes. Best Pr Res Clin Rheumatol 2010; 24: 513-26. http://dx.doi.org/10.1016/j.berh.2010.02.003

Yamaoka K, Saharinen P, Pesu M, et al. The Janus kinases (Jaks). Genome Biol 2004; 5: 253. http://dx.doi.org/10.1186/gb-2004-5-12-253

Milici AJ, Kudlacz EM, Audoly L, Zwillich S, Changelian P. Cartilage preservation by inhibition of Janus kinase 3 in two rodent models of rheumatoid arthritis. Arthritis Res Ther 2008; 10: R14. http://dx.doi.org/10.1186/ar2365

West K. CP-690550, a JAK3 inhibitor as an immunosuppressant for the treatment of rheumatoid arthritis, transplant rejection, psoriasis and other immune-mediated disorders. Curr Opin Investig Drugs 2009; 10: 491-504.

Borie DC, Changelian PS, Larson MJ, et al. Immunosuppression by the JAK3 inhibitor CP-690,550 delays rejection and significantly prolongs kidney allograft survival in non-human primates. Transplantation 2005; 79: 791-801. http://dx.doi.org/10.1097/01.TP.0000157117.30290.6F

Kontzias A, Kotlyar A, Laurence A, Changelian P, O’Shea J. Jakinibs: a new class of kinase inhibitors in cancer and autoimmune disease. Curr Opin Pharmacol 2012; 12: 464-70. http://dx.doi.org/10.1016/j.coph.2012.06.008

Fleischmann R, Kremer J, Cush J, et al. Placebo-Controlled Trial of Tofacitinib Monotherapy in Rheumatoid Arthritis. N Engl J Med 2012; 367: 495-507. http://dx.doi.org/10.1056/NEJMoa1109071

Van der Heijde D, Tanaka Y, Fleischmann R, et al. Tofacitinib (CP-690,550) in patients with rheumatoid arthritis receiving methotrexate: Twelve-month data from a twenty-four-month phase III randomized radiographic study. Arthritis Rheum 2013; 65: 559-70. http://dx.doi.org/10.1002/art.37816

Burmester GR, Blanco R, Charles-Schoeman C, et al. Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet 2013; 381: 451-60. http://dx.doi.org/10.1016/S0140-6736(12)61424-X

Van Vollenhoven RF, Fleischmann R, Cohen S, et al. Tofacitinib or adalimumab vs. placebo in rheumatoid arthritis. N Engl J Med 2012; 367: 508-19. http://dx.doi.org/10.1056/NEJMoa1112072

Yarilina A, Xu K, Chan C, Ivashkiv LB. Regulation of inflammatory responses in tumor necrosis factor-activated and rheumatoid arthritis synovial macrophages by JAK inhibitors. Arthritis Rheum 2012; 64: 3856-66. http://dx.doi.org/10.1002/art.37691

Williams W, Scherle P, Shi J, et al. A Randomized Placebo-Controlled Study of INCB018424, a Selective Janus Kinase1& 2 (JAK1&2) Inhibitor in Rheumatoid Arthritis (RA). Arthritis Rheum 2008; 58: Abstr. 714.

Ostojic A, Vrhovac R, Verstovsek S. Ruxolitinib for the treatment of myelofibrosis: its clinical potential. Ther Clin Risk Manag 2012; 8: 95-103.

Greenwald MW, Fidelus-Gort R, Levy R, Liang J, Vaddi K, Williams W V. A randomized dose-ranging, placebo-controlled study of INCB028050, a selective JAK1 and JAK2 inhibitor in subjects with active rheumatoid arthritis. [abstract]. Arthritis Rheum 2010; 62: 2172.

Tagoe C, Putterman C. JAK2 inhibition in murine systemic lupus erythematosus. Immunotherapy 2012; 4: 369-72. http://dx.doi.org/10.2217/imt.12.20

Lu LD, Stump KL, Wallace NH, et al. Depletion of autoreactive plasma cells and treatment of lupus nephritis in mice using CEP-33779, a novel, orally active, selective inhibitor of JAK2. J Immunol 2011; 187: 3840-53. http://dx.doi.org/10.4049/jimmunol.1101228

Wang S, Yang N, Zhang L, et al. Jak/STAT signaling is involved in the inflammatory infiltration of the kidneys in MRL/lpr mice. Lupus 2010; 19: 1171-80. http://dx.doi.org/10.1177/0961203310367660

Oellerich T, Bremes V, Neumann K, et al. The B-cell antigen receptor signals through a preformed transducer module of SLP65 and CIN85. EMBO J 2011; 30: 3620-34. http://dx.doi.org/10.1038/emboj.2011.251

García-García E, Nieto-Castañeda G, Ruiz-Saldaña M, Mora N, Rosales C. FcgammaRIIA and FcgammaRIIIB mediate nuclear factor activation through separate signaling pathways in human neutrophils. J Immunol 2009; 182: 4547-56. http://dx.doi.org/10.4049/jimmunol.0801468

Zarbock A, Ley K. Protein tyrosine kinases in neutrophil activation and recruitment. Arch Biochem Biophys 2011; 510: 112-9. http://dx.doi.org/10.1016/j.abb.2011.02.009

Pamuk ON, Tsokos GC. Spleen tyrosine kinase inhibition in the treatment of autoimmune, allergic and autoinflammatory diseases. Arthritis Res Ther 2010; 12: 222. http://dx.doi.org/10.1186/ar3198

Kyttaris VC, Tsokos GC. Syk kinase as a treatment target for therapy in autoimmune diseases. Clin Immunol 2007; 124: 235-7. http://dx.doi.org/10.1016/j.clim.2007.06.005

Cha H, Boyle DL, Inoue T, et al. A novel spleen tyrosine kinase inhibitor blocks c-Jun N- terminal kinase-mediated gene expression in synoviocytes. J Pharmacol Exp Ther 2006; 317: 571-8. http://dx.doi.org/10.1124/jpet.105.097436

Mun SH, Kim JW, Nah SS, et al. Tumor necrosis factor alpha-induced interleukin-32 is positively regulated via the Syk/protein kinase Cdelta/JNK pathway in rheumatoid synovial fibroblasts. Arthritis Rheum 2009; 60: 678-85. http://dx.doi.org/10.1002/art.24299

Pine PR, Chang B, Schoettler N, et al. Inflammation and bone erosion are suppressed in models of rheumatoid arthritis following treatment with a novel Syk inhibitor. Clin Immunol 2007; 124: 244-57. http://dx.doi.org/10.1016/j.clim.2007.03.543

Weinblatt ME, Kavanaugh A, Genovese MC, Musser TK, Grossbard EB, Magilavy DB. An Oral Spleen Tyrosine Kinase (Syk) Inhibitor for Rheumatoid Arthritis. N Engl J Med 2010; 363: 1303-12. http://dx.doi.org/10.1056/NEJMoa1000500

Genovese MC, Kavanaugh A, Weinblatt ME, et al. An oral Syk kinase inhibitor in the treatment of rheumatoid arthritis: a three-month randomized, placebo-controlled, phase II study in patients with active rheumatoid arthritis that did not respond to biologic agents. Arthritis Rheum 2011; 63: 337-45. http://dx.doi.org/10.1002/art.30114

Bahjat FR, Pine PR, Reitsma A, et al. An orally bioavailable spleen tyrosine kinase inhibitor delays disease progression and prolongs survival in murine lupus. Arthritis Rheum 2008; 58: 1433-44. http://dx.doi.org/10.1002/art.23428

Deng G-M, Liu L, Bahjat FR, Pine PR, Tsokos GC. Suppression of skin and kidney disease by inhibition of spleen tyrosine kinase in lupus-prone mice. Arthritis Rheum 2010; 62: 2086-92.

AstraZeneca - AstraZeneca announces top-line results from Phase III OSKIRA Trials of FOSTAMATINIB and decision not to proceed with regulatory filings. http//www.astrazeneca. com/Media/Press-releases/Article/20130504-Astrazeneca-Announces-Topline-Results-from-Phase-Iii-O (accessed March 07, 2014) n.d.

investors & media: Rigel Pharmaceuticals: News Release. http//ir.rigel.com/phoenix.zhtml?c=120936&p=irol-newsArticle&ID=1872309&highlight=(accessed March 07, 2014) n.d.

Paniagua RT, Sharpe O, Ho PP, et al. Selective tyrosine kinase inhibition by imatinib mesylate for the treatment of autoimmune arthritis. J Clin Invest 2006; 116: 2633-42. http://dx.doi.org/10.1172/JCI28546

Ames PRJ, Reilly DO, Aye WINWIN, Beatty C. Imatinib treatment of seropositive arthritis in a young woman with chronic myeloid leukemia. J Rheumatol 2008; 35: 1682.

Atwell S, Adams JM, Badger J, et al. A novel mode of Gleevec binding is revealed by the structure of spleen tyrosine kinase. J Biol Chem 2004; 279: 55827-32. http://dx.doi.org/10.1074/jbc.M409792200

Novartis Pharmaceuticals. 3-Month, Multi-Center, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate Efficacy, Safety & Tolerability of Imatinib 400 mg Daily in Combination With Methotrexate (MTX)Compared to MTX Alone in the Treatment of Rheumatoid Arthritis (RA). Clin [Internet] Bethesda Natl Libr Med (US) 2000- [cited 2012 Sept 18] 2012.

Chung L, Fiorentino DF, Benbarak MJ, et al. Molecular framework for response to imatinib mesylate in systemic sclerosis. Arthritis Rheum 2009; 60: 584-91. http://dx.doi.org/10.1002/art.24221

Distler JHW, Jüngel A, Huber LC, et al. Imatinib mesylate reduces production of extracellular matrix and prevents development of experimental dermal fibrosis. Arthritis Rheum 2007; 56: 311-22. http://dx.doi.org/10.1002/art.22314

Gordon J, Spiera R. Imatinib and the treatment of fibrosis: recent trials and tribulations. Curr Rheumatol Rep 2011; 13: 51-8. http://dx.doi.org/10.1007/s11926-010-0146-6

Liao JK, Seto M, Noma K. Rho Kinase (ROCK) Inhibitors. J Cardiovasc Pharmacol 2009; 50: 17-24. http://dx.doi.org/10.1097/FJC.0b013e318070d1bd

Li Y, Harada T, Juang Y, et al. Phosphorylated ERM is responsible for increased t cell polarization, adhesion, and migration in patients with systemic lupus erythematosus. J Immunol 2007; 178: 1938-47.

Tharaux P-L, Bukoski RC, Rocha PN, et al. Rho kinase promotes alloimmune responses by regulating the proliferation and structure of T cells. J Immunol 2003; 171: 96-105.

Biswas PS, Gupta S, Chang E, et al. Phosphorylation of IRF4 by ROCK2 regulates IL-17 and IL-21 production and the development of autoimmunity in mice. J Clin Invest 2010; 120: 3280-95. http://dx.doi.org/10.1172/JCI42856

Stirzaker RA, Biswas PS, Gupta S, Song L, Bhagat G, Pernis AB. Administration of fasudil, a ROCK inhibitor, attenuates disease in lupus-prone NZB/W F1 female mice. Lupus 2012; 21: 656-61. http://dx.doi.org/10.1177/0961203312436862

Mano H. Tec family of protein-tyrosine kinases: an overview of their structure and function. Cytokine Growth Factor Rev 2000; 10: 267-80. http://dx.doi.org/10.1016/S1359-6101(99)00019-2

Miller AT, Berg LJ. New insights into the regulation and functions of Tec family tyrosine kinases in the immune system. Curr Opin Immunol 2002; 14: 331-40. http://dx.doi.org/10.1016/S0952-7915(02)00345-X

August A, Fischer A, Hao S, Mueller C, Ragin M. Molecules in focus the Tec family of tyrosine kinases in T cells , amplifiers of T cell receptor signals. Int J Biochem Cell Biol 2002; 34: 1184-9. http://dx.doi.org/10.1016/S1357-2725(02)00068-7

Khan WN. B cell receptor and BAFF receptor signaling regulation of B cell homeostasis. J Immunol 2009; 183: 3561-7. http://dx.doi.org/10.4049/jimmunol.0800933

Maas A, Hendriks RW. Role of Bruton’s tyrosine Kkinase in B cell development. Dev Immunol 2001; 8: 171-81. http://dx.doi.org/10.1155/2001/28962

Honigberg LA, Smith AM, Sirisawad M, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci USA 2010; 107: 13075-80. http://dx.doi.org/10.1073/pnas.1004594107

Chang BY, Huang MM, Francesco M, et al. The Bruton tyrosine kinase inhibitor PCI-32765 ameliorates autoimmune arthritis by inhibition of multiple effector cells. Arthritis Res Ther 2011; 13: R115. http://dx.doi.org/10.1186/ar3400

Liu L, Paolo J Di, Barbosa J, Rong H, Reif K, Wong H. Antiarthritis rffect of a novel Bruton’s Tyrosine Kinase (BTK) inhibitor in rat collagen-induced arthritis and mechanism- based pharmacokinetic / pharmacodynamic modeling: relationships between inhibition of BTK phosphorylation and efficacy. J Pharmacol Exp Ther 2011; 338: 154-63. http://dx.doi.org/10.1124/jpet.111.181545

Konda VR, Desai A, Darland G, Bland JS, Tripp ML. META060 inhibits osteoclastogenesis and matrix metalloproteinases in vitro and reduces bone and cartilage degradation in a mouse model of rheumatoid arthritis. Arthritis Rheum 2010; 62: 1683-92. http://dx.doi.org/10.1002/art.27441

D’Aura Swanson C, Paniagua RT, Lindstrom TM, Robinson WH. Tyrosine kinases as targets for the treatment of rheumatoid arthritis. Nat Rev Rheumatol 2009; 5: 317-24. http://dx.doi.org/10.1038/nrrheum.2009.82

Dehlin M, Bokarewa M, Rottapel R, et al. Intra-articular fms-like tyrosine kinase 3 ligand expression is a driving force in induction and progression of arthritis. PLoS One 2008; 3: e3633. http://dx.doi.org/10.1371/journal.pone.0003633

Paniagua RT, Chang A, Mariano MM, et al. c-Fms-mediated differentiation and priming of monocyte lineage cells play a central role in autoimmune arthritis. Arthritis Res Ther 2010; 12: R32. http://dx.doi.org/10.1186/ar2940

Habets G, Zhang J, Burton B, Zhang C, Ibrahim P, Wong B. Efficacy of the Selective CSF1R (Fms) Inhibitor PLX5622 in Mouse Models of Rheumatoid Arthritis. [abstract]. Arthritis Rheum 2010; 62: 273.

Plexxikon. A Phase 1b Study to Assess Safety, Pharmacokinetics, Pharmacodynamics, and Drug-Drug Interaction of PLX5622 in Patients With Rheumatoid Arthritis Who Are Receiving Methotrexate. Clin [Internet] Bethesda Natl Libr Med (US) 2000- [cited 2012 Sept 28] 2013.

Isakov N, Altman A. PKC-theta-mediated signal delivery from the TCR/CD28 surface receptors. Front Immunol 2012; 3: 273. http://dx.doi.org/10.3389/fimmu.2012.00273

Healy AM, Izmailova E, Fitzgerald M, et al. PKC-theta-deficient mice are protected from Th1-dependent antigen-induced arthritis. J Immunol 2006; 177: 1886-93.

Sun Z. Intervention of PKC-θ as an immunosuppressive regimen. Front Immunol 2012; 3: 225. http://dx.doi.org/10.3389/fimmu.2012.00225

Gibbons JJ, Abraham RT, Yu K. Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth. Semin Oncol 2009;36 (Suppl 3): S3-17. http://dx.doi.org/10.1053/j.seminoncol.2009.10.011

Fernandez D, Perl A. mTOR signaling: a central pathway to pathogenesis in systemic lupus erythematosus? Discov Med 2010; 9: 173-8.

Warner LM, Adams LM, Sehgal SN. Rapamycin prolongs survival and arrests pathophysiologic changes in murine systemic lupus erythematosus. Arthritis Rheum 1994; 37: 289-97. http://dx.doi.org/10.1002/art.1780370219

Lui SL, Yung S, Tsang R, et al. Rapamycin prevents the development of nephritis in lupus-prone NZB/W F1 mice. Lupus 2008; 17: 305-13. http://dx.doi.org/10.1177/0961203307088289

Ramos-Barrón A, Piñera-Haces C, Gómez-Alamillo C, et al. Prevention of murine lupus disease in (NZBxNZW)F1 mice by sirolimus treatment. Lupus 2007; 16: 775-81. http://dx.doi.org/10.1177/0961203307081401

Lui SL, Tsang R, Chan KW, et al. Rapamycin attenuates the severity of established nephritis in lupus-prone NZB/W F1 mice. Nephrol Dial Transplant 2008; 23: 2768-76. http://dx.doi.org/10.1093/ndt/gfn216

Fernandez D, Bonilla E, Mirza N, Niland B, Perl A. Rapamycin reduces disease activity and normalizes T cell activation-induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis Rheum 2006; 54: 2983-8. http://dx.doi.org/10.1002/art.22085

State University of New York - Upstate Medical University. Prospective Study of Rapamycin for the Treatment of SLE (Rapamune). Clin [Internet] Bethesda Natl Libr Med (US) 2000- [cited 2013 Nov 18] 2013.

Downloads

Published

2014-04-05

Issue

Section

Articles