Label-Free Detection of Doxorubicin in Lake Water by an Electrochemical Aptamer Biosensor

Authors

  • Songjia Luo School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
  • Lu Wang School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
  • Hao Qu School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China and Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
  • Lei Zheng School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China and Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei University of Technology, Hefei 230009, China

DOI:

https://doi.org/10.12970/2311-1755.2023.11.01

Keywords:

Electrochemical aptamer biosensor, Doxorubicin detection, Label-free detection

Abstract

The application of electrochemical sensors to the detection of real samples is hampered by the fact that the electrode surface is often prone to adsorption of other substances that cause a non-specific current response. In addition, electroactive substances in the actual sample are prone to redox reactions on the electrode surface and affect the detection of target molecules. In this paper, we constructed a novel DOX sensor with excellent selectivity using an aptamer-modified gold electrode and used it for the label-free rapid detection of DOX in lake water. DOX molecules in solution can be captured by the aptamers immobilised on the surface of the gold electrode, followed by the DOX molecules getting electrons on the surface of the electrode and undergoing a reduction reaction. Aptamers give electrochemical sensors excellent sensitivity and selectivity. Finally, the electrochemical aptamer biosensor was successfully applied to detect DOX in lake water with a detection limit of 30 nmol/L and a detection range of 30 nmol/L–10 μmol/L.

References

Liu C, Li B, Liu M, Mao S. Demand, status, and prospect of antibiotics detection in the environment. Sensors and Actuators B: Chemical 2022; 369: 132383. https://doi.org/10.1016/j.snb.2022.132383

Wang Q, Zhao W-M. Optical methods of antibiotic residues detections: A comprehensive review. Sensors and Actuators B: Chemical 2018; 269: 238-256. https://doi.org/10.1016/j.snb.2018.04.097

Zhou Y-J, Zhu F, Zheng D-Y, Gao M-M, Guo B-F, Zhang N, Meng Y, Wu G-l, Zhou Y-l, Huo X. Detection of antibiotics in the urine of children and pregnant women in Jiangsu, China. Environmental Research 2021; 196: 110945. https://doi.org/10.1016/j.envres.2021.110945

Mescheryakova SA, Matlakhov IS, Strokin PD, Drozd DD, Goryacheva IY, Goryacheva OA. Fluorescent Alloyed CdZnSeS/ZnS Nanosensor for Doxorubicin Detection Biosensors 2023; 13: 596. https://doi.org/10.3390/bios13060596

Zhu J, Chu H, Shen J, Wang C, Wei Y. Green preparation of carbon dots from plum as a ratiometric fluorescent probe for detection of doxorubicin. Optical Materials 2021; 114: 110941. https://doi.org/10.1016/j.optmat.2021.110941

Amy DH, Alex L, Steffi T, Angela FD, Nicole AB. Adverse Effects of Doxorubicin and Its Metabolic Product on Cardiac RyR2 and SERCA2A. Molecular Pharmacology 2014; 86(4): 438. https://doi.org/10.1124/mol.114.093849

Lv N, Qiu X, Han Q, Xi F, Wang Y, Chen J. Anti-Biofouling Electrochemical Sensor Based on the Binary Nanocomposite of Silica Nanochannel Array and Graphene for Doxorubicin Detection in Human Serum and Urine Samples Molecules 2022; 27: 8640. https://doi.org/10.3390/molecules27248640

Laura Soriano M, Carrillo-Carrion C, Ruiz-Palomero C, Valcárcel M. Cyclodextrin-modified nanodiamond for the sensitive fluorometric determination of doxorubicin in urine based on its differential affinity towards β/γ-cyclodextrins. Microchimica Acta 2018; 185(2): 115. https://doi.org/10.1007/s00604-017-2660-y

Sottani C, Rinaldi P, Leoni E, Poggi G, Teragni C, Delmonte A, Minoia C. Simultaneous determination of cyclophosphamide, ifosfamide, doxorubicin, epirubicin and daunorubicin in human urine using high-performance liquid chromatography/electrospray ionization tandem mass spectrometry: bioanalytical method validation. Rapid Communications in Mass Spectrometry 2008; 22(17): 2645-2659. https://doi.org/10.1002/rcm.3657

Mahnik SN, Lenz K, Weissenbacher N, Mader RM, Fuerhacker M. Fate of 5-fluorouracil, doxorubicin, epirubicin, and daunorubicin in hospital wastewater and their elimination by activated sludge and treatment in a membrane-bio-reactor system. Chemosphere 2007; 66(1): 30-37. https://doi.org/10.1016/j.chemosphere.2006.05.051

Aboras SI, Korany MA, Abdine HH, Ragab MA A, El Diwany A, Agwa MM. HPLC with fluorescence detection for the bioanalysis and pharmacokinetic study of Doxorubicin and Prodigiosin loaded on eco-friendly casein nanomicelles in rat plasma. Journal of Chromatography B 2021; 1187: 123043. https://doi.org/10.1016/j.jchromb.2021.123043

Sikora T, Morawska K, Lisowski W, Rytel P, Dylong A. Application of Optical Methods for Determination of Concentration of Doxorubicin in Blood and Plasma Pharmaceuticals 2022; 15: 112. https://doi.org/10.3390/ph15020112

Mohammadinejad A, Abnous K, Alinezhad Nameghi M, Yahyazadeh R, Hamrah S, Senobari F, Mohajeri SA. Application of green-synthesized carbon dots for imaging of cancerous cell lines and detection of anthraquinone drugs using silica-coated CdTe quantum dots-based ratiometric fluorescence sensor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2023; 288: 122200. https://doi.org/10.1016/j.saa.2022.122200

Florea A, Guo Z, Cristea C, Bessueille F, Vocanson F, Goutaland F, Dzyadevych S, Săndulescu R, Jaffrezic-Renault N. Anticancer drug detection using a highly sensitive molecularly imprinted electrochemical sensor based on an electropolymerized microporous metal organic framework. Talanta 2015; 138: 71-76. https://doi.org/10.1016/j.talanta.2015.01.013

Lima HRS, da Silva JS, de Oliveira Farias EA, Teixeira PRS, Eiras C, Nunes L, César C. Electrochemical sensors and biosensors for the analysis of antineoplastic drugs. Biosensors and Bioelectronics 2018; 108: 27-37. https://doi.org/10.1016/j.bios.2018.02.034

Hashemi SA, Mousavi SM, Bahrani S, Gholami A, Chiang W-H, Yousefi K, Omidifar N, Rao NV, Ramakrishna S, Babapoor A, Lai CW. Bio-enhanced polyrhodanine/graphene Oxide/Fe3O4 nanocomposite with kombucha solvent supernatant as ultra-sensitive biosensor for detection of doxorubicin hydrochloride in biological fluids. Materials Chemistry and Physics 2022; 279: 125743. https://doi.org/10.1016/j.matchemphys.2022.125743

Abbasi M, Ezazi M, Jouyban A, Lulek E, Asadpour-Zeynali K, Ertas YN, Houshyar J, Mokhtarzadeh A, Soleymani J. An ultrasensitive and preprocessing-free electrochemical platform for the detection of doxorubicin based on tryptophan/polyethylene glycol-cobalt ferrite nanoparticles modified electrodes. Microchemical Journal 2022; 183: 108055. https://doi.org/10.1016/j.microc.2022.108055

Guo H, Jin H, Gui R, Wang Z, Xia J, Zhang F. Electrodeposition one-step preparation of silver nanoparticles/carbon dots/reduced graphene oxide ternary dendritic nanocomposites for sensitive detection of doxorubicin. Sensors and Actuators B: Chemical 2017; 253: 50-57. https://doi.org/10.1016/j.snb.2017.06.095

Kalambate PK, Li Y, Shen Y, Huang Y. Mesoporous Pd@Pt core–shell nanoparticles supported on multi-walled carbon nanotubes as a sensing platform: application in simultaneous electrochemical detection of anticancer drugs doxorubicin and dasatinib. Analytical Methods 2019; 11(4): 443-453. https://doi.org/10.1039/C8AY02381F

Kondori T, Tajik S, Akbarzadeh TN, Beitollahi H, Graiff C. Screen-printed electrode modified with Co-NPs, as an electrochemical sensor for simultaneous determination of doxorubicin and dasatinib. Journal of the Iranian Chemical Society 2022; 19(11): 4423-4434. https://doi.org/10.1007/s13738-022-02613-9

Abhishek Singh T, Sharma V, Thakur N, Tejwan N, Sharma A, Das J. Selective and sensitive electrochemical detection of doxorubicin via a novel magnesium oxide/carbon dot nanocomposite based sensor. Inorganic Chemistry Communications 2023; 150: 110527. https://doi.org/10.1016/j.inoche.2023.110527

Zhao H, Shi K, Zhang C, Ren J, Cui M, Li N, Ji X, Wang R. Spherical COFs decorated with gold nanoparticles and multiwalled carbon nanotubes as signal amplifier for sensitive electrochemical detection of doxorubicin. Microchemical Journal 2022; 182: 107865. https://doi.org/10.1016/j.microc.2022.107865

Sebokolodi TI, Sipuka DS, Tsekeli TR, Nkosi D, Arotiba OA. An electrochemical sensor for caffeine at a carbon nanofiber modified glassy carbon electrode. Journal of Food Measurement and Characterization 2022; 16(4): 2536-2544. https://doi.org/10.1007/s11694-022-01365-7

Cho CH, Kim JH, Kim J, Yun JW, Park TJ, Park JP. Re-engineering of peptides with high binding affinity to develop an advanced electrochemical sensor for colon cancer diagnosis. Analytica Chimica Acta 2021; 1146: 131-139. https://doi.org/10.1016/j.aca.2020.11.011

Ma K, Yang L, Liu J, Liu J. Electrochemical Sensor Nanoarchitectonics for Sensitive Detection of Uric Acid in Human Whole Blood Based on Screen-Printed Carbon Electrode Equipped with Vertically-Ordered Mesoporous Silica-Nanochannel Film Nanomaterials 2022; 12(7): 1157. https://doi.org/10.3390/nano12071157

Huang L, Su R, Xi F. Sensitive detection of noradrenaline in human whole blood based on Au nanoparticles embedded vertically-ordered silica nanochannels modified pre-activated glassy carbon electrodes. Frontiers in Chemistry 2023; 11. https://doi.org/10.3389/fchem.2023.1126213

Qu H, Ma Q, Wang L, Mao Y, Eisenstein M, Soh HT, Zheng L. Measuring Aptamer Folding Energy Using a Molecular Clamp. Journal of the American Chemical Society 2020; 142(27): 11743-11749. https://doi.org/10.1021/jacs.0c01570

Qu H, Csordas AT, Wang J, Oh SS, Eisenstein MS, Soh HT. Rapid and Label-Free Strategy to Isolate Aptamers for Metal Ions. ACS Nano 2016; 10(8): 7558-7565. https://doi.org/10.1021/acsnano.6b02558

Wang R, Cao Y, Qu H, Wang Y, Zheng L. Label-free detection of Cu(II) in fish using a graphene field-effect transistor gated by structure-switching aptamer probes. Talanta 2022; 237: 122965. https://doi.org/10.1016/j.talanta.2021.122965

Wang Y, Bi Y, Wang R, Wang L, Qu H, Zheng L. DNA-Gated Graphene Field-Effect Transistors for Specific Detection of Arsenic(III) in Rice. Journal of Agricultural and Food Chemistry 2021; 69(4): 1398-1404. https://doi.org/10.1021/acs.jafc.0c07052

Leung KK, Downs AM, Ortega G, Kurnik M, Plaxco KW. Elucidating the Mechanisms Underlying the Signal Drift of Electrochemical Aptamer-Based Sensors in Whole Blood. ACS Sensors 2021; 6(9): 3340-3347. https://doi.org/10.1021/acssensors.1c01183

Idili A, Parolo C, Alvarez-Diduk R, Merkoçi A. Rapid and Efficient Detection of the SARS-CoV-2 Spike Protein Using an Electrochemical Aptamer-Based Sensor. ACS Sensors 2021; 6(8): 3093-3101. https://doi.org/10.1021/acssensors.1c01222

Bahner N, Reich P, Frense D, Menger M, Schieke K, Beckmann D. An aptamer-based biosensor for detection of doxorubicin by electrochemical impedance spectroscopy. Analytical and Bioanalytical Chemistry 2018; 410(5): 1453-1462. https://doi.org/10.1007/s00216-017-0786-8

Ferguson BS, Hoggarth DA, Maliniak D, Ploense K, White RJ, Woodward N, Hsieh K, Bonham AJ, Eisenstein M, Kippin TE, Plaxco KW, Soh HT. Real-Time, Aptamer-Based Tracking of Circulating Therapeutic Agents in Living Animals. Science Translational Medicine 2013; 5(213): 213ra165. https://doi.org/10.1126/scitranslmed.3007095

Biaglow A, Erickson K, McMurran S. Enzyme Kinetics and the Michaelis-Menten Equation. PRIMUS 2010; 20(2): 148-168. https://doi.org/10.1080/10511970903486491

Mo J, Wang S, Zeng J, Ding X. Aptamer-based Upconversion Fluorescence Sensor for Doxorubicin Detection. Journal of Fluorescence 2023; 33(5): 1897-1905. https://doi.org/10.1007/s10895-023-03184-5

Zhang L, Xing H, Liu W, Wang Z, Hao Y, Wang H, Dong W, Liu Y, Shuang S, Dong C, Gong X. 11-Mercaptoundecanoic Acid-Functionalized Carbon Dots As a Ratiometric Optical Probe for Doxorubicin Detection. ACS Applied Nano Materials 2021; 4(12): 13734-13746. https://doi.org/10.1021/acsanm.1c03141

Meng F, Gan F, Ye G. Bimetallic gold/silver nanoclusters as a fluorescent probe for detection of methotrexate and doxorubicin in serum. Microchimica Acta 2019; 186(6): 371. https://doi.org/10.1007/s00604-019-3477-7

Rong S, Zou L, Meng L, Yang X, Dai J, Wu M, Qiu R, Tian Y, Feng X, Ren X, Jia L, Jiang L, Hang Y, Ma H, Pan H. Dual function metal-organic frameworks based ratiometric electrochemical sensor for detection of doxorubicin. Analytica Chimica Acta 2022; 1196: 339545. https://doi.org/10.1016/j.aca.2022.339545

Kong F, Luo J, Jing L, Wang Y, Shen H, Yu R, Sun S, Xing Y, Ming T, Liu M, Jin H, Cai X. Reduced Graphene Oxide and Gold Nanoparticles-Modified Electrochemical Aptasensor for Highly Sensitive Detection of Doxorubicin. Nanomaterials 2023; 13: 1223. https://doi.org/10.3390/nano13071223

Downloads

Published

2023-11-24

Issue

Section

Articles