Keller Box and Smoothed Particle Hydrodynamic Numerical Simulation of Two-Phase Transport in Blood Purification Auto-Transfusion Dialysis Hybrid Device with Stokes and Darcy Number Effects

Authors

  • O. Anwar Beg Gort Engovation Research (Propulsion/Biomechanics), 15 Southmere Ave., Bradford BD7 3NU, UK
  • B. Vasu Department of Mathematics, Motilal Nehru National Institute of Technology, Allahabad, India
  • T. Sochi Department of Physics and Astronomy, University College London, Gower Street, London, UK
  • V.R. Prasad Department of Mathematics, Madanapalle Institute of Technology and Science, Madanapalle-517325, India

DOI:

https://doi.org/10.12970/2311-1755.2013.01.02.4

Keywords:

 Biotechnology, blood flow, Prandtl number, two-phase suspension, Stokes number, particle phase velocity, Keller box finite difference algorithm, Smoothed particle hydrodynamics (SPH), Thermo-haemotological processing, autotransfusion medicine, biothermal devices.

Abstract

A computational simulation of laminar natural convection fully-developed multi-phase suspension in a porous medium channel is presented. The Darcy model is employed for the porous material which is valid for low velocity, viscous-dominated flows. The Drew-Marble fluid-particle suspension model is employed to simulate both particulate (red blood cell) and fluid (plasma) phases. The transformed two-point nonlinear boundary value problem is shown to be controlled by a number of key dimensionless thermo-physical parameters, namely the Darcy number (Da), momentum inverse Stokes number (Skm), particle loading parameter (pL), inverse thermal Stokes number (SkT), particle-phase wall slip parameter (W) and buoyancy parameter (B). Detailed numerical solutions are presented with an optimized Keller Box implicit finite difference Method (KBM) for the influence of these parameters on the fluid-phase velocity (U) and particle-phase velocity (Up). Validation is also included using the Smoothed Particle Hydrodynamic (SPH) Lagrangian method and excellent correlation achieved. Increasing Darcy number is observed to significantly accelerate the fluid-phase flow and less dramatically enhance particle-phase velocity field. Magnitudes of fluid phase velocity are also elevated with both increasing viscosity ratio and particle-phase wall slip parameter. Increasing buoyancy effect depresses particle phase velocity. An increase in particle loading parameter is also observed to suppress both fluid and particle phase velocities. No tangible change in fluid or particle phase temperatures is computed with increasing Darcy number. The study is relevant to dialysis devices exploiting thermal and porous media filtration features.

References

Jung JH, Hassanein A, Lyczkowski RW. Hemodynamic computation using multiphase flow dynamics in a right coronary artery. Ann Biomed Eng 2006; 34: 393-407. http://dx.doi.org/10.1007/s10439-005-9017-0

Sharan M, Popel AS. A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology 2001; 38: 415-28.

Alt W, Dembo M. Cytoplasm dynamics and cell motion: two-phase flow models. Math Biosci 1999; 156: 207-28. http://dx.doi.org/10.1016/S0025-5564(98)10067-6

Sharana M, Pope AS. A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology 2001; 38: 415-28.

Cokelet GR, Goldsmith HL. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates. In Giants of Engineering Science, Chapter 3, Richard Skalak and Biofluid Engineering Science, Matador, UK 2003.

Pries AR, Secomb TW, Gaehtgens P. Biophysical aspects of blood flow in the microvasculature. Microvasc Res 1996; 32: 654-67.

Larson RG, Scriven LE, Davis HT. Percolation theory of two phase flow in porous media. Chem Eng Sci 1981; 36: 57-73. http://dx.doi.org/10.1016/0009-2509(81)80048-6

Adler PM, Brenner H. Multiphase flow in porous media. Ann Rev Fluid Mech 1988; 20: 35-59. http://dx.doi.org/10.1146/annurev.fl.20.010188.000343

Brenner H. Dispersion Resulting from flow through spatially periodic porous media. Phil Trans R Soc Lond A 1980; 297: 81-133. http://dx.doi.org/10.1098/rsta.1980.0205

Marble FE. Dynamics of dusty gases. Ann Rev Fluid Mech 1970; 2: 397-446. http://dx.doi.org/10.1146/annurev.fl.02.010170.002145

Bég OA, Rawat S, Bhargava R. Two-phase magneto-heat transfer in a particle-suspension with heat source and buoyancy effects. International Conference on Advances in Modeling, Optimization and Computing (AMOC-2011), Technical Session M-2: Computational Fluid Dynamics, Indian Institute of Technology (Roorkee), India, December 5-7, 2011.

Bég TA, Rashidi MM, Bég OA, Rahimzadeh N. Differential transform semi-numerical simulation of biofluid-particle suspension flow and heat transfer in non-Darcian porous media. Comput Methods Biomech Biomed Engin 2013; 16: 896-907. http://dx.doi.org/10.1080/10255842.2011.643470

Massoudi M, Kim J, Antaki JF. Modeling and numerical simulation of blood flow using the Theory of Interacting Continua. Int J Non Linear Mech 2012; 47: 506-20. http://dx.doi.org/10.1016/j.ijnonlinmec.2011.09.025

Turcotte DL, Durlofsky L. A triangle based mixed finite element—finite volume technique for modeling two–phase flow through porous media. J Comput Phys 1993; 105: 252-66. http://dx.doi.org/10.1006/jcph.1993.1072

Douglas J Jr. Finite difference methods for two-phase incompressible flow in porous media. SIAM J Numer Anal 1983; 20: 681-96. http://dx.doi.org/10.1137/0720046

Tung VX, Dhir VK. Finite element solution of multi-dimensional two-phase flow through porous media with arbitrary heating conditions. Int J Multiph Flow 1990; 16: 985-1002. http://dx.doi.org/10.1016/0301-9322(90)90103-P

Dzwinel W, Boryczko K, Yuen DA. A discrete-particle model of blood dynamics in capillary vessels. J Colloid Interface Sci 2003; 258: 163-73. http://dx.doi.org/10.1016/S0021-9797(02)00075-9

Sankar S, Lee U. Two-phase non-linear model for the flow through stenosed blood vessels. J Mech Sci Tech 2007; 4: 678-89.

Bourantas GC, Skouras ED, Loukopoulos VC, Burganos VN. Two-phase blood flow modeling and mass transport in the human aorta. in: Biomedical Engineering- 10th International Workshop, Thessalonika, Greece, 5-7 Oct, 2011.

Federspiel WJ. Pulmonary diffusing capacity: implications of two-phase blood flow in capillaries. Resp Physiol 1989; 77: 119-34. http://dx.doi.org/10.1016/0034-5687(89)90035-2

Jaffrin MY, Ding L, Laurent JM. Simultaneous (thermal) convective and diffusive mass transfer in a hemodialyzer. ASME J Biomech Eng 1990; 112: 212-9. http://dx.doi.org/10.1115/1.2891174

Prasad VR, Vasu B, Bég OA. Numerical study of mixed bioconvection in porous media saturated with nanofluid and containing oxytactic micro-organisms. J Mech Med Biol 2013; 13: 25.

Bég OA. Smoothed particle hydrodynamics (SPH) simulation of leukocyte deformation in blood flow. Technical Report- BIO-H-451, 62 pages, Gort Engovation-Aerospace Research, Bradford, UK, July, 2013.

Kedem O, Katchalsky A. Thermodynamics analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta 1958; 27: 229-46. http://dx.doi.org/10.1016/0006-3002(58)90330-5

Sano Y, Nakayama A. A porous media approach for analyzing a counter current dialyzer system. ASME J Heat Transfer 2012; 134: 072602.1-11.

Drew DA. Mathematical modeling of two-phase flow. Ann Rev Fluid Mech 1983; 15: 261-91. http://dx.doi.org/10.1146/annurev.fl.15.010183.001401

Bég OA, Zueco J, Takhar H.S. Laminar free convection from a continuously moving vertical surface in a thermally-stratified, non-Darcian high-porosity medium: Network numerical study. Int Comm Heat Mass Transfer 2008; 35: 7, 810-6. http://dx.doi.org/10.1016/j.icheatmasstransfer.2008.03.007

Bég OA, Takhar HS, Soundalgekar VM, Woo G. Hydrodynamic and heat-mass transfer modeling of a non-Newtonian fluid through porous medium with boundary effects: numerical simulation. 2nd Int. Conf. on Computational Heat and Mass Transfer, Rio De Janeiro, Brazil, October 22-26, 2001.

Bég OA, Zueco J, Ghosh SK. Unsteady natural convection of a short-memory viscoelastic fluid in a non-Darcian regime: network simulation. Chem Eng Commun 2010; 198: 172-90. http://dx.doi.org/10.1080/00986445.2010.499842

Bég OA, Makinde OD. Viscoelastic flow and species transfer in a Darcian high-permeability channel. J Petrol Sci Eng 2011; 76: 93-9. http://dx.doi.org/10.1016/j.petrol.2011.01.008

Bég OA, Rashidi MM, Rahimzadeh N, Bég TA, Hung T-K. Homotopy semi-numerical simulation of two-phase thermal haemodynamics in a high permeability blood purification device. J Mech Med Biol 2013; 13: 1350066.1-26.

Cebeci T, Bradshaw P. Momentum Transfer in Boundary Layers, Academic Press, New York 1977.

Cebeci T, Bradshaw P. Physical and Computational Aspects of Convective Heat Transfer, Springer Verlag, Berlin/New York 1984. http://dx.doi.org/10.1007/978-3-662-02411-9

Ramachandra V, Prasad V, Bhaskar RN, Bég OA. Free convection heat and mass transfer from an isothermal horizontal circular cylinder in a micropolar fluid with Soret/Dufour effects. Fourth International Conference on Fluid Mechanics and Fluid Power, Indian Institute of Technology Madras, Chennai, December 16-18, 2010.

Keller HB. Numerical Solution of Two-Point Boundary Value Problems, SIAM, Philadelphia, USA 1976.

Bég OA. Numerical methods for multi-physical magnetohydrodynamics (sub and supersonic), Chapter 1, 1-110, New Developments in Hydrodynamics Research, Nova Science, New York, September, 2012.

Prasad VR, Vasu B, Bég OA, Parshad R. Unsteady free convection heat and mass transfer in a Walters-B viscoelastic flow past a semi-infinite vertical plate: a numerical study. Thermal Science-International Scientific Journal 2011; 15: S291-S305.

Prasad VR, Subbarao A, Bhaskar RN, Vasu B, Bég OA. Modelling laminar transport phenomena in a Casson rheological fluid from a horizontal circular cylinder with partial slip. P I Mech Eng E-J PRO 2013. http://dx.doi.org/10.1177/0954408912466350

Prasad VR, Vasu B, Bég OA. Thermo-diffusion and diffusion-thermo effects on free convection flow past a horizontal circular cylinder in a non-Darcy porous medium. J Porous Media 2013; 16: 315-34. http://dx.doi.org/10.1615/JPorMedia.v16.i4.40

Bég OA, Takhar HS, Perdikis C, Ram PC. Mathematical Modeling of hydromagnetic convection of a second order fluid in non-Darcy porous media using the Keller-Box difference scheme. Theoretical and Applied Mechanics Conference, Blacksburg, Virginia, USA, June, [Complex Convection Session] 2002.

Bég OA, Prasad VR, Takhar HS, Soundalgekar VM. Thermo-convective flow in an isotropic, homogenous medium using Brinkman’s model: Numerical Study. Int J Num Methods Heat Fluid Flow 1998; 8: 59-89. http://dx.doi.org/10.1108/09615539810220298

Lucy LB. A numerical approach to the testing of the fission hypothesis. Astron J 1977; 82: 1013-24. http://dx.doi.org/10.1086/112164

Monaghan JJ, Gingold RA. Shock simulation by the particle method SPH. J Comput Phys 1983; 52: 374-89. http://dx.doi.org/10.1016/0021-9991(83)90036-0

Monaghan JJ. Smoothed particle hydrodynamics. Rep Prog Phys 2005; 30: 1703-59. http://dx.doi.org/10.1088/0034-4885/68/8/R01

Monaghan JJ. Simulating free surface flows with SPH. J Comput Phys 1994; 110: 399-406. http://dx.doi.org/10.1006/jcph.1994.1034

Monaghan JJ. SPH without a tensile instability. J Comput Phys 2000; 159: 290-311. http://dx.doi.org/10.1006/jcph.2000.6439

Morris JP, Fox PJ, Zhu Y. Modeling low Reynolds number incompressible flows using SPH. J Comput Phys 1997; 136: 214-26. http://dx.doi.org/10.1006/jcph.1997.5776

Oger G, Doring M, Alessandrini B, Ferrant P. Two-dimensional SPH simulations of wedge water entries. J Comput Phys 2006; 213: 803-22. http://dx.doi.org/10.1016/j.jcp.2005.09.004

Comas-Cardona S, Groenenboom PHL, Binetruy C, Krawczak P. A generic mixed FE-SPH method to address hydro-mechanical coupling in liquid composite moulding processes. Composites: Part A 2005; 36: 1004-10.

Sigalotti LDG, Klapp J, Sira E, Melean Y, Hasmy A. SPH simulations of time-dependent Poiseuille flow at low Reynolds numbers. J Comput Phys 2003; 191: 622-38. http://dx.doi.org/10.1016/S0021-9991(03)00343-7

Zhu Y, Fox PJ. Smoothed particle hydrodynamics model for diffusion through porous media. Transport Porous Med 2001; 43: 441-71. http://dx.doi.org/10.1023/A:1010769915901

Cleary PW, Monaghan JJ. Conduction modelling using smoothed particle hydrodynamics. J Comput Phys 1999; 148: 235-36. http://dx.doi.org/10.1006/jcph.1998.6118

Bég OA. SPLASH- A smoothed particle hydrodynamic solver for spacecraft “splashdown” simulations in MATLAB. Technical Report for European Space Consortium- AERO-D-61-SPH, Gort Engovation-Aerospace Engineering Sciences, Bradford, UK, 85 pages, July, 2013.

Bég OA. Smoothed particle hydrodynamic simulation of magnetic field materials processing, Technical Report for Metallurgy Industry (Norway)- MANUFACT-M-14-SPH, Gort Engovation-Aerospace Engineering Sciences, Bradford, UK, 64 pages, August, 2013.

Bég OA, Motsa SS, Takhar HS. Pseudo-spectral and smoothed particle hydrodynamic simulation of natural convection from a wavy surface to non-Darcian porous media, Computers Fluids 2013; Submitted.

Liu GR, Liu MB. Smoothed Particle Hydrodynamics: A Meshfree Particle Method, World Scientific Publishing Co., Singapore 2003.

Downloads

Published

2013-07-02

Issue

Section

Articles