DTM-Padé Numerical Simulation of Electrohydrodynamic Ion Drag Medical Pumps with Electrical Hartmann and Electrical Reynolds Number Effects
DOI:
https://doi.org/10.12970/2311-1755.2013.01.02.3Keywords:
Electrohydrodynamics, Semi-numerical solutions, Differential Transform Method (DTM), Padé approximants, numerical shooting quadrature, electrical Hartmann number, ion drag pumps, medical drug delivery.Abstract
The DTM-Padé method, a combination of the differential transform method (DTM) and Padé approximants, is applied to provide highly accurate, stable and fast semi-numerical solutions for several nonlinear flow regimes of interest in electrohydrodynamic ion drag pumps, arising in chemical engineering processing. In both regimes studied, the transformed, dimensionless ordinary differential equations subject to realistic boundary conditions are solved with DTM-Padé and excellent correlation with numerical quadrature is achieved. The influence of electrical Reynolds number (ReE), electrical slip number (Esl), electrical source number (Es) and also electrical Hartmann number (Hae) are examined graphically. Applications of this study include novel ion drag pumps and astronautical micro-reactors. This study constitutes the first application of the DTM-Padé semi-computational algorithm to electrohydrodynamic biotechnology flows.Furthermore the range of solutions given significantly extends the existing computations in previous studies and provides a much more general analysis of ion drag pump electrohydrodynamics, of direct relevance to medical drug delivery systems.
References
Zamankhan P, Ahmadi G, Fan F-G. Coupling effects of the flow and electric fields in electrostatic precipitators. J Appl Phys 2004; 96: 7002-10. http://dx.doi.org/10.1063/1.1810201
Yeh S-R, Seul M, Shraiman BI. Assembly of ordered colloidal aggregates by electric-field-induced fluid flow. Nature 1997; 386: 57-9. http://dx.doi.org/10.1038/386057a0
Driouich M, Gueraoui K, Sammouda M, Haddad YM, Aberdane I. The effect of electric field on the flow of a compressible ionized fluid in a cylindrical tube. Adv Studies Theor Phys 2012; 6: 687-96.
Green NG, Ramos A, Gonzalez A, Morgan H, Castellanos A. Fluid flow induced by non-uniform AC electric fields in electrolytes on microelectrodes III: Observation of streamlines and numerical simulation. Phys Rev E 2002; 66: 026305. http://dx.doi.org/10.1103/PhysRevE.66.026305
Hou M, Chen W, Zhang T, Lu K. Electric field controlled dilute–dense flow transition in granular flow through a vertical pipe. Powder Technol 2003; 43: 135-6.
Chankin AV, Coster DP, Asakura N, et al. A possible role of radial electric field in driving parallel ion flow in scrape-off layer of divertor tokamaks. Nucl Fusion 2007; 47: 762. http://dx.doi.org/10.1088/0029-5515/47/8/006
Zake M, Purmals M, Lubane M. Enhanced electric field effect on a flame. J Enhanced Heat Transfer 1998; 5: 139-63.
Cao JG, Huang JP, Zhou LW. Structure of electrorheological fluids under an electric field and a shear flow: experiment and computer simulation. J Phys Chem B 2006; 110: 11635-9. http://dx.doi.org/10.1021/jp0611774
Naqwi AA, Hartman RPA, Marijnissen JCM. Basic studies of electrohydrodynamic atomization process using phase Doppler measurement technique. Part Part Syst Char 1996; 13: 143-9l.
Lao AIK, Trau D, Hsing I-M. Miniaturized flow fractionation device assisted by a pulsed electric field for nanoparticle separation. Anal Chem 2002; 74: 5364-9. http://dx.doi.org/10.1021/ac0257647
Choi HK, Park J-U, Park OO, Ferreira PM, Georgiadis JG, Rogers JA. Scaling laws for jet pulsations associated with high resolution electrohydrodynamic printing. Appl Phys Lett 2008; 92: 123109. http://dx.doi.org/10.1063/1.2903700
Lenguito G, de la Mora F, Gomez A. Multiplexed electrospray for space propulsion applications, 46th AIAA Joint Propulsion Conference, AIAA-2010-6521, Caltech, Pasadena 2010.
Roth JR, Sin H, Madhan R, Wilkinson S. Flow re-attachment and acceleration by paraelectric and peristaltic electrohydrodynamic effects. 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA Paper 2003-531, 2003.
Bég OA, Zueco J, Bég TA, Bhargava R. Network simulation of the electrohydrodynamic ion drag energy pump with electrical Reynolds number, slip and source effects. Int J Appl Math Mech 2010; 6: 78-95.
Mastroberardino A. Homotopy analysis method applied to electrohydrodynamic flow. Commun Nonlinear Sci Numer Sim 2011; 16: 2730-6. http://dx.doi.org/10.1016/j.cnsns.2010.10.004
Chen X, Cheng J, Yin X. Numerical analysis of electrohydrodynamics in a round pipe. IEEE T Dielect El In 2003; 10: 278-84. http://dx.doi.org/10.1109/TDEI.2003.1194111
Fengt JQ, Scott TC. A computational analysis of electrohydrodynamics of a leaky dielectric drop, in an electric field. J Fluid Mech 1996; 311: 289-326. http://dx.doi.org/10.1017/S0022112096002601
Vázquez PA, Georghiou GE, Castellanos A. Characterization of injection instabilities in electrohydrodynamics by numerical modelling: comparison of particle in cell and flux corrected transport methods for electroconvection between two plates. J Phys D Appl Phys 2006; 39: 2754. http://dx.doi.org/10.1088/0022-3727/39/13/019
Xuan ZC, Zhang XK. Simulation of Stokes flow over microelectrodes with least squares meshfree method. Simul Model Pract Th 2008; 16: 294-314. http://dx.doi.org/10.1016/j.simpat.2007.11.012
Verplaetsen F, Berghmans JA. Study of the influence of an electric field on the liquid-vapor interface during film boiling of stagnant fluids. IEEE T Ind Appl 1997; 33: 1512-8. http://dx.doi.org/10.1109/28.649963
Lean M, Domoto G. Electrohydrodynamics of charge transport in Stoke's flow. IEEE T Magn 1987; 23: 2656-9. http://dx.doi.org/10.1109/TMAG.1987.1065696
Kupershtokh AL, Medvedev DA. Lattice Boltzmann equation method in electrohydrodynamic problems. J Electrostat 2006; 64: 581-5. http://dx.doi.org/10.1016/j.elstat.2005.10.012
Van Poppel BP. Numerical methods for simulating multiphase electrohydrodynamic flows with application to liquid fuel injection. PhD Thesis, University of Colorado at Boulder, USA 2010; p. 144.
Grandison S, Vanden-Broeck J-M, Papageorgiou DT, Miloh T, Spivak B. Ax symmetric waves in electrohydrodynamic flows. J Eng Math 2007; 62: 133-48. http://dx.doi.org/10.1007/s10665-007-9183-1
Khan NA, Jamil M, Mahmood A, Ara A. Approximate solution for the electrohydrodynamic flow in a circular cylindrical conduit. ISRN Comput Math 2012.
Zhou JK. Differential Transformation and Its Applications for Electrical Circuits. Huazhong Univ. Press, Wuhan, China 1986.
Rashidi MM, Keimanesh M. Using differential transform method and Padé approximant for solving MHD flow in a laminar liquid film from a horizontal stretching surface. Math Prob Eng 2010; 1-14.
Rashidi MM, Laraqi N, Sadri SM. A novel analytical solution of mixed convection about an inclined flat plate embedded in a porous medium using the DTM-Padé. Int J Therm Sci 2010; 49: 2405-12. http://dx.doi.org/10.1016/j.ijthermalsci.2010.07.005
Rashidi MM, Laraqi N, Parsa AB. Analytical modeling of heat convection in magnetized micropolar fluid by using modified differential transform method. Heat Transf-Asian Res 2011; 40: 187-204. http://dx.doi.org/10.1002/htj.20337
Rashidi MM, Keimanesh M, Bég OA, Hung TK. Magneto-hydrodynamic biorheological transport phenomena in a porous medium: A simulation of magnetic blood flow control and filtration. Int J Numer Methods Biomed Eng 2011; 27: 805-21. http://dx.doi.org/10.1002/cnm.1420
Rashidi MM, Erfani E, Bég OA, Ghosh SK. Modified differential transform method (DTM) simulation of hydromagnetic multi-physical flow phenomena from a rotating disk. World J Mech 2011; 1: 217-30. http://dx.doi.org/10.4236/wjm.2011.15028
Bég OA, Rashidi MM, Mehr NF. Second law analysis of hydromagnetic flow from a stretching rotating disk: DTM-Padé simulation of novel nuclear MHD propulsion systems. Frontiers Aerospace Eng 2013; 2: 29-38.
Keimanesh M, Rashidi MM, Chamkha AJ, Jafari R. Study of a third grade non-Newtonian fluid flow between two parallel plates using the multi-step differential transform method. Comput Math Appl 2011; 62: 2871-91. http://dx.doi.org/10.1016/j.camwa.2011.07.054
Bég OA, Rashidi MM, Keimanesh M, Bég TA. Semi-numerical modelling of “chemically-frozen” combusting buoyancy-driven boundary layer flow along an inclined surface. Int J Appl Math Mech 2013; 9: 1-1613.
Parsa AB, Bég OA, Rashidi MM, Sadri SM. Semi-computational simulation of magneto-hemodynamic flow in a semi-porous channel using optimal homotopy and differential transform methods. Comput Biol Med 2013; 5: 19.
Rashidi MM, Ferdows M, Uddin MJ, Bég OA, Rahimzadeh N. Group theory and differential transform analysis of mixed convective heat and mass transfer from a horizontal surface with chemical reaction effects. Chem Eng Commun 2012; 199: 1012-43. http://dx.doi.org/10.1080/00986445.2011.636850
Bég TA, Rashidi MM, Bég OA, Rahimzadeh N. Differential transform semi-numerical simulation of biofluid-particle suspension flow and heat transfer in non-Darcian porous media. Comput Methods Biomech Biomed Eng 2012; DOI. ORG/ 10. 1080/10255842. 2011.643470
Bég OA, Rashidi MM, Aziz A, Keimanesh M. Differential transform study of hypersonic laminar boundary layer flow and heat transfer over slender axisymmetric bodies of revolution. Int J Appl Math Mech 2012; 8: 83-108.
McKee S, Watson R, Cuminato J, Caldwell J, Chen MS. Calculation of electrohydrodynamic flow in a circular cylindrical conduit. Z Angew Math Mech 1997; 77: 457-65. http://dx.doi.org/10.1002/zamm.19970770612
Seyed-Yagoobi J, Bryan JE, Castaneda JA. Theoretical analysis of ion-drag pump. IEEE Trans Ind Appl 1995; 31: 469-76. http://dx.doi.org/10.1109/28.382105
Chang J-S, Tsubone H, Harvel GD, Urashima K. Narrow-flow-channel-driven EHD gas pumps for an advanced thermal management of microelectronics. IEEE Trans Ind Appl 2010; 46: 1151-8. http://dx.doi.org/10.1109/TIA.2010.2045326
Rada M, Darabi J, Ohadi MM, Lawler J. Electrohydrodynamic pumping of liquid nitrogen using a mesoscale ion-drag pump. IECEC 01 Energy Technologies Beyond Traditional Boundaries, Savannah, Georgia, USA 2001.
Bég OA, Hameed M, Bég TA. Chebyschev spectral collocation simulation of nonlinear boundary value problems in electrohydrodynamics. Int J Comput Methods Eng Sci Mech 2013; 14: 104-15. http://dx.doi.org/10.1080/15502287.2012.698707
Bég OA, Bhargava R, Rashidi MM. Numerical Simulation in Micropolar Fluid Dynamics: Mathematical Modelling of Nonlinear Flows of Micropolar Fluids. Lambert Academic Publishing, Germany 2011; p. 288, ISBN: 978-3-8454-
-0.
Baker GA, Graves-Morris P. Padé Approximants, Encyclopedia of Mathematics and Its Applications, Parts I and II, Addison-Wesley Publishing Company, New York 1981.
Baker GA. Essential of Padé Approximants, Academic Press, London 1975.
Rashidi MM. The modified Differential Transform Method for solving MHD boundary-layer equations. Comput Phys Commun 2009; 180: 2210-7. http://dx.doi.org/10.1016/j.cpc.2009.06.029
Bég OA. Numerical methods for multi-physical magnetohy-drodynamics, Chapter 1, pp. 1-110, New Developments in Hydrodynamics Research, Nova Science, USA 2012.
Gorla RSR, Gatica JE, Ghorashi B, Ineure P, Bird LW. Heat transfer in a thin liquid film in the presence of an electric field. Chem Eng Commun 2004; 191: 718-31. http://dx.doi.org/10.1080/00986440490276038