A Study of Creeping Sinusoidal Flow of Bio-Rheological Fluids through a Two-Dimensional High Permeability Medium Channel

Authors

  • Dharmendra Tripathi Department of Mathematics, National Institute of Technology – Delhi, Dwarka, Sector – 9, Delhi 110077, India
  • O. Anwar Bég Gort Engovation Research (Aerospace Propulsion and Biomechanics), 15 Southmere Avenue, Great Horton, Bradford, BD7 3NU, West Yorkshire, UK
  • V.S. Pandey Department of Physics, National Institute of Technology – Delhi, Dwarka, Sector – 9, Delhi 110077, India
  • A.K. Singh Department of Computer Science and Engineering, National Institute of Technology – Delhi, Dwarka, Sector – 9, Delhi 110077, India

DOI:

https://doi.org/10.12970/2311-1755.2013.01.02.2

Keywords:

 Sinusoidal wave propagation, Couple stress fluid, Porous channel, Stream lines, Cerebral diseased hemodynamics, Gastric flow.

Abstract

The creeping sinusoidal flow of non-Newtonian couple stress fluids in a two-dimensional porous medium channel with deformable walls, is investigated as a model of peristaltic physiological gastric transport. A mathematical model is developed which is also applicable to hemodynamics of diseased arteries. The assumptions of long wavelength and low Reynolds number approximation are employed for creeping (viscous-dominated) flow. Solutions for axial velocity, volumetric flow rate, pressure gradient and stream function are obtained. The influence of couple stress rheological parameter and permeability parameter on velocity profile, pressure gradient and stream lines patterns are computed with the aid of Mathematica Software.

References

Bathe KJ, Ledezma GA. Benchmark problems for incompressible fluid flows with structural interactions. Comput Struct 2007; 85: 628-44. http://dx.doi.org/10.1016/j.compstruc.2007.01.025

Ferrua MJ, Singh RP. Modeling the fluid dynamics in a human stomach to gain insight of food digestion. Food Sci 2010; 75: R151-62. http://dx.doi.org/10.1111/j.1750-3841.2010.01748.x

Tripathi D, Pandey SK, Bég OA. Mathematical modelling of heat transfer effects on swallowing dynamics of viscoelastic food bolus through the human oesophagus. Int J Thermal Sci 2013; 70: 41-53. http://dx.doi.org/10.1016/j.ijthermalsci.2013.03.005

Shapiro AH, Jafferin MY, Weinberg SL. Peristaltic pumping with long wavelengths at low Reynolds number. J Fluid Mech 1969; 37: 799-825. http://dx.doi.org/10.1017/S0022112069000899

Fung YG, Yih CS. Peristaltic transport. ASME: J Appl Mech 1968; 35: 669-75.

Crosetto P, Reymond P, Deparis S, Kontaxakis D, Stergiopulos N, Quarteroni A. Fluid structure interaction simulations of physiological blood flow in the aorta. Computers Fluids 2011; 43: 46-57. http://dx.doi.org/10.1016/j.compfluid.2010.11.032

Buriev B, Kim T, Seo T. Fluid-structure interactions of physiological flow in stenosed artery. Korea-Australia Rheology J 2009; 21: 39-46.

Yazdanpanh-Ardakani K, Niroomand-Oscuii H. New approach in modeling peristaltic transport of non-Newtonian fluid. J Mech Med Biol 2013; 13: 1350052.1-1350052.14.

Aboelkassem Y, Staples AE. Selective pumping in a network: insect-style microscale flow transport. Bioinspir Biomim 2013; 8: 026004. http://dx.doi.org/10.1088/1748-3182/8/2/026004

Hung TK, Brown TD. Solid particle motion in two-dimensional peristaltic flows. J Fluid Mech 1976; 73: 77-97. http://dx.doi.org/10.1017/S0022112076001262

Tripathi D, Bég OA. A numerical study of oscillating peristaltic flow of generalized Maxwell viscoelastic fluids through a porous medium. Trans Porous Med 2013; 95: 337-48. http://dx.doi.org/10.1007/s11242-012-0046-5

Bég OA, Elsayed AF, Alarabi T. Cross-diffusion effects on variable-property viscoelastic peristaltic flow in an eccentric cylinder with curved compliant walls: homotopy perturbation method study. Comp Biol Med 2013; in press.

Bég OA, Keimanesh M, Rashidi MM, Davoodi M. Multi-step DTM simulation of magneto-peristaltic flow of a conducting Williamson viscoelastic fluid. Int J Appl Math Mech 2013; 9: 1-19.

Tripathi D, Bég OA, Curiel-Sosa JL. Peristaltic flow of generalized Oldroyd-B fluids with slip effects. Comput Methods Biomech Biomed Eng 2012. http://dx.doi.org/10.1080/10255842.2012.688109

Hina S, Hayat T, Alsaedi A. Heat and mass transfer effects on the peristaltic flow of Johnson-Segalman fluid in a curved channel with complaint walls. Int J Heat Mass Tran 2012; 55: 3511-21. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.03.014

Bég OA, Tripathi D. Mathematical simulation of peristaltic pumping with double-diffusive convection in nanofluids: a bio-nanoengineering model. Proc IMech E Part N: J Nanoeng Nanosys 2012; 225: 99-114.

Cuennet JG, Vasdekis AE, De Sio L, Psaltis D. Optofluidic modulator based on peristaltic nematogen microflows. Nature Photonics 2011; 5: Pages: 234-8.

Tripathi D, Bég OA. Mathematical modeling of peristaltic pumping of viscoplastic bio-fluids. Proc IMechE Part H: J Eng Med 2014; 228: 67-88.

Stokes VK. Theories of fluid with micro-structure, Springer-Verlag, New York 1984. http://dx.doi.org/10.1007/978-3-642-82351-0

Stokes, VK. Couple stress fluids. Phys Fluid 1966; 9: 1709-15. http://dx.doi.org/10.1063/1.1761925

Yousif AE, Al-Allaq AA. The hydrodynamic squeeze film lubrication of the ankle joint. Int J Mech Eng Appl 2013; 1: 34-42.

Sinha P, Singh C. Effects of couple stresses on blood flow through an artery with mild stenosis. Biorheology 1984; 21: 303-15.

Pal D, Rudraiah N, Devanathan R. A couple stress model of blood flow in the microcirculation. Bull Math Biol 1988; 50: 329-44.

Chaturani P, Upadhya VS. Pulsatile flow of a couple stress fluids through circular tubes with application to blood flow. Biorheology 1978; 15: 193-201.

Chaturani P, Rathod PV. A critical study of Poiseuille flow of couple stress fluid with applications to blood flow. Biorheology 1981; 18: 235-44.

Zueco J, Bég OA. Network numerical simulation applied to pulsatile non-Newtonian flow through a channel with couple stress and wall mass flux effects. Int J Appl Math Mech 2009; 5: 1-16.

Valanis KC, Sun CT. Poiseuille flow of fluid with couple stress with applications to blood flow. Biorheology 1969; 6: 85-97.

Srivastava VP. Flow of a couple stress fluid representing blood through stenotic vessels with a peripheral layer. Indian J Pure Appl Math 2003; 34: 1727-40.

Bég OA, Ghosh SK, Ahmed S, Bég TA. Mathematical modeling of oscillatory magneto-convection of a couple-stress biofluid in an inclined rotating channel. J Mech Med Biol 2012; 12: 1-35. http://dx.doi.org/10.1142/S0219519411004654

Ramana Murthy JV, Muthu P, Nagaraju G. Finite difference solution for MHD flow of couple stress fluid between two concentric rotating cylinders with porous lining. Int J Appl Math Mech 2010; 6: 1-28.

Srivastava LM. Peristaltic transport of a couple stress fluid. Rheologica Acta 1986; 25: 638-41. http://dx.doi.org/10.1007/BF01358172

Mekheimer KS. Effect of the induced magnetic field on the peristaltic flow of a couple stress fluid. Phys Lett A 2008; 372: 4271-8. http://dx.doi.org/10.1016/j.physleta.2008.03.059

Kulaylat MN, Doerr RJ. Small bowel obstruction, Surgical Treatment: Evidence-Based and Problem-Orientated, Holzheimer RG, Mannick JA, Eds. Munich, Zuckschwerdt Publishers 2011.

Takeuchi K, Satoh H. Measurement of small intestinal damage. Curr Protoc Toxicol 2010; 45: 21.7.1-21.7.31.

Khaled ARA, Vafai K. The role of porous media in modelling flow and heat transfer in biological tissues. Int J Heat Mass Transfer 2003; 24: 195-203.

Tripathi D. Peristaltic hemodynamic flow of couple-stress fluids through a porous medium with slip effect. Trans Porous Med 2012; 92: 559-72. http://dx.doi.org/10.1007/s11242-011-9920-9

Tripathi D, Bég OA. Magnetohydrodynamic peristaltic flow of a couple stress fluid through coaxial channels containing a porous medium. J Mech Med Biol 2012; 12: 1250088.1-1250088.20.

Tripathi D. Peristaltic flow of couple-stress conducting fluids through a porous channel: applications to blood flow in the micro-circulatory system. J Biol Syst 2011; 19: 461. http://dx.doi.org/10.1142/S021833901100407X

Cowin SC. Polar fluids. Phys Fluids 1968; 11: 1919-27. http://dx.doi.org/10.1063/1.1692219

Wolfram. The Mathematica Book, Cambridge University Press, UK 1999; p. 1470.

Norouzi M, Davoodi M, Bég OA, Joneidi AA. Analysis of the effect of normal stress differences on heat transfer in creeping viscoelastic Dean flow. Int J Thermal Sci 2013; 69: 61-9. http://dx.doi.org/10.1016/j.ijthermalsci.2013.02.002

Downloads

Published

2013-07-02

Issue

Section

Articles