Human Platelet Lysates Promote the Differentiation Potential of Adipose-Derived Adult Stem Cell Cultures

Authors

  • Caroline Rauch Division of Physiology, Innsbruck Medical University, A-6020 Innsbruck, Austria
  • Elisabeth Feifel Division of Physiology, Innsbruck Medical University, A-6020 Innsbruck, Austria
  • Angelika Flörl Divison of Histology and Embryology, Innsbruck Medical University, A-6020 Innsbruck, Austria
  • Kristian Pfaller Divison of Histology and Embryology, Innsbruck Medical University, A-6020 Innsbruck, Austria
  • Gerhard Gstraunthaler Division of Physiology, Innsbruck Medical University, A-6020 Innsbruck, Austria

DOI:

https://doi.org/10.12970/2311-1755.2014.02.02.1

Keywords:

 Human adult stem cells, platelet lysates, multipotent stem cell differentiation, mesodermal lineage.

Abstract

Adipose tissue from liposuction is a rich source for human mesenchymal stem cells. This type of adult stem cell is ethically acceptable, that paved the way for research on their potential use in regenerative medicine. However, any clinical application of adult stem cells is impeded by the use of FBS as an animal-derived growth supplement. In addition, stem cell cultures gained importance as innovative human-based alternative to animal testing, in vitro toxicology, drug testing and safety assessment. Thus, animal-derived component-free culture protocols are mandatory for a successful application of human stem cell-based testing systems under humanized conditions.

Recently, we succeeded in using human platelet lysates (PL) as a serum alternative in the cell culture of a number of human and animal cell lines, and human mesenchymal stem cells. PL were prepared as cell-free extracts from activated donor thrombocytes.

The minimal criteria defining multipotent mesenchymal cells are (1) the capacity to adhere to plastic, (2) the expression of specific surface antigens (e.g. CD73, CD90, CD105) for undifferentiated state, and (3) the potential of the cells to differentiate into the adipogenic, chondrogenic and osteogenic lineage. In the present study, adipose-derived stem cells (ADSC) were used as cell model. ADSC were maintained under PL or FBS and then switched to the respective media to induce mesodermal differentiation. Differentiation endpoints were assessed by phase-contrast microscopy and by histochemical staining: (1) lipid droplets in adipocytes were stained by Oil red O, (2) proteoglycans in chondrogenic spheroids were detected by toluidineblue, and fine structure of spheroids was monitored by scanning electron microscopy, and (3) calcium deposits in differentiated osteoblasts were stained with silver nitrate (von Kossa staining). Adipogenic differentiation was further confirmed by quantitative real-time PCR of selected marker genes (PREF1 vs. FABP4). There were no differences between FBS- and PL-grown ADSC, indicative for retention of the differentiation potential of ADSC under animal-derived component-free culture conditions in PL-supplemented culture media. The degree of adipogenic and osteogenic differentiation was even more pronounced under PL compared to FBS.

References

Jones DL, Wagers AJ. No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol 2008; 9: 11-21. http://dx.doi.org/10.1038/nrm2319

Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 2008; 132: 598-611. http://dx.doi.org/10.1016/j.cell.2008.01.038

Voog J, Jones DL. Stem cells and the niche: a dynamic duo. Cell Stem Cell 2010; 6: 103-15. http://dx.doi.org/10.1016/j.stem.2010.01.011

Wagers AJ. The stem cell niche in regenerative medicine. Cell Stem Cell 2012; 10: 362-9. http://dx.doi.org/10.1016/j.stem.2012.02.018

Eckfeldt CE, Mendenhall EM, Verfaillie CM. The molecular repertoire of the “almighty” stem cell. Nat Rev Mol Cell Biol 2005; 6: 726-37. http://dx.doi.org/10.1038/nrm1713

Snippert HJ, Clevers H. Tracking adult stem cells. EMBO Rep 2011; 12: 113-22. http://dx.doi.org/10.1038/embor.2010.216

Zhang J, Niu C, Ye L, Huang H, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425: 836-41. http://dx.doi.org/10.1038/nature02041

Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 2006; 24:150-154. http://dx.doi.org/10.1016/j.tibtech.2006.01.010

Zuk PA. The adipose-derived stem cell: Looking back and looking ahead. Mol Biol Cell 2010; 21: 1783-7. http://dx.doi.org/10.1091/mbc.E09-07-0589

Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng 2001; 7: 211-28. http://dx.doi.org/10.1089/107632701300062859

Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13: 4279-95. http://dx.doi.org/10.1091/mbc.E02-02-0105

Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315-7. http://dx.doi.org/10.1080/14653240600855905

Horwitz EM, Le Blanc K, Dominici M, Mueller I, et al. Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy 2005; 7: 393-5. http://dx.doi.org/10.1080/14653240500319234

Gstraunthaler G. Alternatives to the use of fetal bovine serum: serum-free cell culture. ALTEX 2003; 20: 275-81.

Brunner D, Frank J, Appl H, et al. Serum-free cell culture: The serum-free media interactive online database. ALTEX 2010; 27: 53-62.

Gstraunthaler G, Lindl T, van der Valk J. A plea to reduce or replace fetal bovine serum in cell culture media. Cytotechnology 2013; 65: 791-793. http://dx.doi.org/10.1007/s10616-013-9633-8

van der Valk J, Mellor D, Brands R, et al. The humane colle-ction of fetal bovine serum and possibilities for serum-free cell and tissue culture. Toxicology In Vitro 2004; 18: 1-12. http://dx.doi.org/10.1016/j.tiv.2003.08.009

van der Valk J, Brunner D, De Smet K, et al. Optimization of chemically defined cell culture media – Replacing fetal bovine serum in mammalian in vitro methods. Toxicology In Vitro 2010; 24: 1053-63. http://dx.doi.org/10.1016/j.tiv.2010.03.016

Bieback K. Platelet lysates as replacement for fetal bovine serum in mesenchymal stromal cell cultures. Transfus Med Hemother 2013; 40: 326-35. http://dx.doi.org/10.1159/000354061

Halme DG, Kessler DA. FDA Regulation of stem-cell–based therapies. New Engl J Med 2006; 355: 1730-5. http://dx.doi.org/10.1056/NEJMhpr063086

Brindley DA, Davie NL, Culme-Seymor EJ, et al. Peak serum: implications of serum supply for cell therapy manufacturing. Regen Med 2012; 7: 7-13. http://dx.doi.org/10.2217/rme.11.112

Gottipamula S, Muttigi MS, Kolkundkar U, Seehtaram RN. Serum-free media for the production of human mesenchymal stromal cells: a review. Cell Prolif 2013; 46: 608-27. http://dx.doi.org/10.1111/cpr.12063

Mannello F, Tonti GA. Concise Review: No breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement non-conditioned medium, or ad hoc formula? All that glitters is not gold! Stem Cells 2007; 25: 1603-9. http://dx.doi.org/10.1634/stemcells.2007-0127

Rauch C, Feifel E, Amann E-M, et al. Alternatives to the use of fetal bovine serum: platelet lysates as a serum substitute in cell culture media. ALTEX 2011; 28. 305-16. http://dx.doi.org/10.14573/altex.2011.4.305

Rauch C, Wechselberger J, Feifel E, Gstraunthaler G. Human platelet lysates successfully replace fetal bovine serum in adipose-derived adult stem cell culture. J Adv Biotechnol Bioeng 2014; 2: 1-11. http://dx.doi.org/10.12970/2311-1755.2014.02.01.1

Tekkatte C, Gunasingh GP, Cherian KM, Sankaranarayanan K. “Humanized” stem cell culture techniques: the animal serum controversy. Stem Cells Int 2011; 2011: 504723. http://dx.doi.org/10.4061/2011/504723

Bernardo ME, Avanzini MA, Perotti C, et al. Optimization of in vitro expansion of human multipotent mesenchymal stromal cells for cell-therapy approaches: further insights in the search for fetal calf serum substitute. J Cell Physiol 2007; 211: 121-30. http://dx.doi.org/10.1002/jcp.20911

Blande IS, Bassenze V, Lavini-Ramos C, et al. Adipose tissue mesenchymal stem cell expansion in animal serum-free medium supplemented with autologous human platelet lysate. Transfusion 2009; 49: 2680-5. http://dx.doi.org/10.1111/j.1537-2995.2009.02346.x

Doucet C, Ernou I, Zhang Y, Llense J-R, et al. Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. J Cell Physiol 2005; 205: 228-36. http://dx.doi.org/10.1002/jcp.20391

Fekete N, Gadelorge M, Fürst D, Maurer C, et al. Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identification of active compounds. Cytotherapy 2012; 14: 540-54. http://dx.doi.org/10.3109/14653249.2012.655420

Felka T, Schäfer R, De Zwart P, Aicher WK. Animal serum-free expansion and differentiation of human mesenchymal stromal cells. Cytotherapy 2010; 12: 143-53. http://dx.doi.org/10.3109/14653240903470647

Hemeda H, Giebel B, Wagner W. Evaluation of human platelet lysate vs. fetal bovine serum for culture of mesenchymal stromal cells. Cytotherapy 2014; 16: 170-80. http://dx.doi.org/10.1016/j.jcyt.2013.11.004

Kocaoemer A, Kern S, Klüter H, Bieback K. Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells 2007; 25: 1270-8. http://dx.doi.org/10.1634/stemcells.2006-0627

Lange C, Cakiroglu F, Spiess A-N, et al. Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J Cell Physiol 2007; 213: 18-26. http://dx.doi.org/10.1002/jcp.21081

Prins H-J, Rozemuller H., Vonk-Griffioen S, et al. Bone-forming capacity of mesenchymal stromal cells when cultured in the presence of human platelet lysate as substitute for fetal bovine serum. Tissue Eng A 2009; 15: 3741-51. http://dx.doi.org/10.1089/ten.tea.2008.0666

Schallmoser K, Bartmann C, Rohde E, et al. Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion 2007; 47: 1436-46. http://dx.doi.org/10.1111/j.1537-2995.2007.01220.x

Balk SD, Levine SP, Young LL, et al. Mitogenic factors present in serum but not in plasma. Proc Natl Acad Sci USA 1981; 78: 5656-60. http://dx.doi.org/10.1073/pnas.78.9.5656

Gospodarowicz D, Ill CR. Do plasma and serum have different abilities to promote cell growth? Proc Natl Acad Sci USA 1980; 77: 2726-30. http://dx.doi.org/10.1073/pnas.77.5.2726

Barrientos S, Stojadinovic O, Golinko MS, et al. Growth factors and cytokines in wound healing. Wound Rep Reg 2008; 16: 585-601. http://dx.doi.org/10.1111/j.1524-475X.2008.00410.x

Nurden AT, Nurden P, Sanchez M, et al. Platelets and wound healing. Frontiers Biosci 2008; 13: 3525-48. http://dx.doi.org/10.2741/2947

Rendu F, Brohard-Bohn B. The platelet release reaction: granules´ constituents, secretion and functions. Platelets 2001; 12: 261-73. http://dx.doi.org/10.1080/09537100120068170

Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev 2003; 83: 835-70.

Gimble JM, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 2003; 5: 362-9. http://dx.doi.org/10.1080/14653240310003026

Keating A. Mesenchymal stromal cells: new directions. Cell Stem Cell 2012; 10: 709-16. http://dx.doi.org/10.1016/j.stem.2012.05.015

Vater C, Kasten P, Stiehler M. Culture media for the differentiation of mesenchymal stromal cells. Acta Biomaterialia 2011; 7: 463-77. http://dx.doi.org/10.1016/j.actbio.2010.07.037

Nombela-Arrieta C, Ritz J, Silberstein LE. The elusive nature and function of mesenchymal stem cells. Nature Rev Mol Cell Biol 2011; 12: 126-31. http://dx.doi.org/10.1038/nrm3049

Johnstone B, Hering T, Caplan AI, et al. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 1998; 238: 265-72. http://dx.doi.org/10.1006/excr.1997.3858

Wang Y, Kim KA, Kim JH, et al. Pref-1, a preadipocyte secreted factor that inhibits adipogenesis. J Nutr 2006; 136: 2953-6.

Lowe CE, O'Rahilly S, Rochford JJ. Adipogenesis at a glance. J Cell Sci 2011; 124: 2681-6. http://dx.doi.org/10.1242/jcs.079699

Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts, assays. Cell Stem Cell 2008; 2: 313-9. http://dx.doi.org/10.1016/j.stem.2008.03.002

Jonsdottir-Buch SM, Lieder R, Sigurjonsson OE. Platelet lysates produced from expired platelet concentrates support growth and osteogenic differentiation of mesenchymal stem cells. PLoS ONE 2013; 8: e68984. http://dx.doi.org/10.1371/journal.pone.0068984

Salem HK, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 2010; 28: 585-96.

Bunnell BA, Flaat M, Gagliardi C, et al. Adipose-derived stem cells: isolation, expansion and differentiation. Methods 2008; 45: 115-20. http://dx.doi.org/10.1016/j.ymeth.2008.03.006

Guilak F, Lott KE, Awad HA, et al. Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J Cell Physiol 2006; 206: 229-37. http://dx.doi.org/10.1002/jcp.20463

Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nature Rev Mol Cell Biol 2006; 7: 885-96. http://dx.doi.org/10.1038/nrm2066

Scott MA, Nguyen VT, Levi B, James AW. Current methods of adipogenic differentiation of mesenchymal stem cells. Stem Cell Dev 2011; 20: 1793-804. http://dx.doi.org/10.1089/scd.2011.0040

Estes BT, Diekman BO, Gimble JM, et al. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat Protocols 2010; 5: 1294-311. http://dx.doi.org/10.1038/nprot.2010.81

Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev 1998; 78: 783-809.

Sul HS. Minireview: Pref-1: Role in adipogenesis and mesenchymal cell fate. Mol Endocrinol 2009; 23: 1717-25. http://dx.doi.org/10.1210/me.2009-0160

Garin-Shkolnik T, Rudich A, Hotamisligil GS, Rubinstein M. FABP4 attenuates PPARγ and adipogenesis and is inversely correlated with PPARγ in adipose tissues. Diabetes 2014; 63: 900-11. http://dx.doi.org/10.2337/db13-0436

Thumser AE, Moore JB, Plant NJ. Fatty acid binding proteins: tissue-specific functions in health and disease. Curr Opin Clin Nutr Metab Care 2014; 17: 124-9. http://dx.doi.org/10.1097/MCO.0000000000000031

Hudak CS, Sul HS. Pref-1, a gatekeeper of adipogenesis. Frontiers in Endocrinol 2013; 4: 79.

Downloads

Published

2014-06-05

Issue

Section

Articles