Efficacy of Essential Oils in In Vitro Control of Acinetobacter baumannii

Authors

  • Glaucimeire Rodrigues de Andrade Universidade Federal de Uberlândia, MG, Brazil
  • Dora Inês Kozusny-Andreani Department of Microbiology and Postgraduate Program in Environmental Sciences, Universidade Brasil,Fernandópolis, SP, Brazil
  • Roberto Andreani Junior Department of Microbiology and Postgraduate Program in Environmental Sciences, Universidade Brasil, Fernandópolis, SP, Brazil
  • Igor Renan Honorato Gatto Ourofino Animal Health Ltda, Cravinhos, SP, Brazil
  • Rogério Rodrigo Ramos Universidade Brasil, Fernandópolis, SP, Brazil

DOI:

https://doi.org/10.12970/2311-1755.2020.08.03

Keywords:

 Medicinal plants, Essential compounds for treatment, Antimicrobials, Mechanisms of action, Acinetobacter baumannii, Infectious diseases.

Abstract

Although Acinetobacter baumannii is common in nature and considered human skin and respiratory tract commensal, it has also been associated to serious infectious diseases, such as pneumonia, urinary tract infection, endocarditis, wound infection, meningitis and septicemia. The present study aimed to evaluate the intrinsic antimicrobial activity of essential oils on the Acinetobacter baumannii ATCC 17978 strain. We used essential oil of rosemary, artemisia, cinnamon, camphor, citronella, Indian clove, Eucalyptus globulus, Eucalyptus staigeriana, Eucalyptus citriodora, tea tree (also known as melaleuca), mint, oregano and sage, in concentrations that ranged from 0 to 100%. The antibacterial activity was determined through the broth microdilution method and through bactericidal kinetics of essential oils. All the oils performed antibacterial activity against Acinetobacter baumannii. citronella, Eucalyptus staigeriana and mint oils presented lower minimum inhibitory concentration and minimum bactericidal concentration. Oregano, tea tree and Indian clove oils presented higher bacterial death rate, and they canceled the microbial load of A. baumannii in up to 60 minutes.

References

Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Ver 2008; 21: 538-82. https://doi.org/10.1128/CMR.00058-07

Tiwari V, Tiwari M. Quantitative proteomics to study carbapenem resistance in Acinetobacter baumannii. Front Microbiol 2014; 5: 512. https://doi.org/10.3389/fmicb.2014.00512

Fregolino E, Gargiulo V, Lanzetta R, Parrilli M, Holst O, Castro CD. Identification and structural determination of the capsular polysaccharides from two Acinetobacter baumannii clinical isolates, MG1 and SMAL. Carbohydr Res 2011; 346: 973-77. https://doi.org/10.1016/j.carres.2011.03.024

Gentile V, Frangipani E, Bonchi C, Minandri F, Runci F, Visca P. Iron and Acinetobacter baumannii biofilm formation. Pathogens 2014; 3: 704-19. https://doi.org/10.3390/pathogens3030704

Lee HW, Koh YM, Kim J, et al. Capacity of multidrugresistant clinical isolates of Acinetobacter baumannii to form biofilm and adhere to epithelial cell surfaces. Clin Microbiol Infect 2008; 14: 49-54. https://doi.org/10.1111/j.1469-0691.2007.01842.x

McConnell MJ, Luis Actis L, Pachón J. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol Rev 2013; 37: 130-55. https://doi.org/10.1111/j.1574-6976.2012.00344.x

Pérez-Llarena FJ, Bou G. Proteomics as a tool for studying bacterial virulence and antimicrobial resistance. Front Microbiol 2016; 7: 1-21. https://doi.org/10.3389/fmicb.2016.00410

Tiwari V, Tiwari M. Phosphoproteomics a san emerging we a ponto develop new antibiotics against carbapenem resistants strain of Acinetobacter baumannii. J Proteomics 2015; 112: 336-38. https://doi.org/10.1016/j.jprot.2014.09.008

Dijkshoorn L, van Aken L, Shunburne L, et al. Prevalence of Acinetobacter baumannii and other acinetobacter spp in faecal samples from non-hospitalised individuals. Clin Microbiol Infect 2005; 11: 329-32. https://doi.org/10.1111/j.1469-0691.2005.01093.x

Playford E, Craig J, Iredell J. Carbapenem-resistant Acinetobacter baumannii in intensive care unit patients: risk factors for acquisition, infection and their consequences. J Hosp Infect 2007; 65: 204-11. https://doi.org/10.1016/j.jhin.2006.11.010

Tuon FF, Penteado-Filho SR, Amarante D, Andrade MA, Borba LA. Mortality rate in patients with nosocomial Acinetobacter meningitis from a Brazilian hospital. Braz J Infect Dis 2010; 14: 437-40. https://doi.org/10.1590/S1413-86702010000500003

Gonzalez-Villoria AM, Valverde-Garduno V. Antibioticresistant Acinetobacter baumannii increasing success remains a challenge as a nosocomial pathogen. J Pathog 2016; 2016: 1-10. https://doi.org/10.1155/2016/7318075

Miyasaki Y, Rabenstein JD, Rhea J, et al. Isolation and characterization of antimicrobial compounds in plant extracts against multidrug-resistant Acinetobacter baumannii. PLoS ONE 2013; 8: e61594. https://doi.org/10.1371/journal.pone.0061594

Qureshi WK, PAlayekar V, Dayan E, Mack JP, Rojtman A. Combating the antibiotic resistance threat. Int J Pharm Pharm Sci 2015; 7: 68-72.

Boukhraz A, Elhartiti H, Barrahi M, et al. Evaluation of the bacteriostatic and bactericidal activity of essential oil of Thymus Satureioides. Int J Res Studies Sci Eng Tech 2016; 3: 24-8.

Silva NCC, Fernandes Júnior A. Biological properties of medicinal plants: a review of their antimicrobial activity. J Venom Anim Toxins 2010; 16: 402-13. https://doi.org/10.1590/S1678-91992010000300006

Adukwu EC, Bowles M, Edwards-Jones V, Bone H. Antimicrobial activity, cytotoxicity and chemical analysis of lemongrass essential oil (Cymbopogon flexuosus) and pure citral. Appl Microbiol Biotechnol 2016; 100: 9619-27. https://doi.org/10.1007/s00253-016-7807-y

Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils-a review. Food Chem Toxicol 2008; 46: 446-75. https://doi.org/10.1016/j.fct.2007.09.106

Langeveld WT, Veldhuizen EJ, Burt SA. Synergy between essential oil components and antibiotics: a review. Crit Rev Microbiol 2014; 40: 76-94. https://doi.org/10.3109/1040841X.2013.763219

Saviuc C, Gheorghe M, Coban S, et al. Rosmarinus officinalis essential oil and eucalyptol act as efflux pumps inhibitors and increase ciprofloxacin efficiency against Pseudomonas aeruginosa and Acinetobacter baumannii MDR strains. Rom Biotechnol Lett 2016; 21: 11782-790.

Burt S. Essential oils: their antibacterial properties and potential applications in foods – a review. Int J Food Microbiol 2004; 94: 233-53. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

Hammer KA, Carson CF, Riley TV. Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 1999; 86: 985-90. https://doi.org/10.1046/j.1365-2672.1999.00780.x

Damjanović-Vratnica B, Đakov T, Šuković D, Damjanović J. Antimicrobial effect of essential oil isolated from eucalyptus globulus labill. from Montenegro. Czech J Food Sci 2011; 29: 277-84. https://doi.org/10.17221/114/2009-CJFS

Montagu A, Saulnier P, Cassissa V, Rossines E, Eveillard M, Joly-Guillou ML. Aromatic and terpenic compounds loaded in lipidic nanocapsules: activity against multi-drug resistant Acinetobacter baumannii assessed in vitro and in a murine model of sepsis. J Nanomed Nanotechnol 2014; 5: 206. https://doi.org/10.4172/2157-7439.1000206

Sienkiewicz M, Głowacka A, Kowalczyk E, WiktorowskaOwczarek A, Jóźwiak-Bębenista M, Łysakowska M. The biological activities of cinnamon, geranium and lavender essential oils. Molecules 2014; 19: 20929-40. https://doi.org/10.3390/molecules191220929

Tiwari V, Roy R, Tiwari M. Antimicrobial active herbal compounds against Acinetobacter baumannii and other pathogens. Front Microbiol 2015; 6: 1-11. https://doi.org/10.3389/fmicb.2015.00618

Taherkhani, M. Chemical investigation and protective effects of bioactive phytochemicals from Artemisia ciniformis. J Chem Chem Eng 2016; 35: 471-81.

Tutar U, Çelik C, Karaman I, Ataş M, Hepokur C. Anti-biofilm and antimicrobial activity of mentha pulegium L essential oil against multidrug-resistant Acinetobacter baumannii. Trop J Pharm Res 2016; 15: 1039-46 https://doi.org/10.4314/tjpr.v15i5.20

CLSI. Performance standards for antimicrobial susceptibility testing. 27th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2017.

Ogbebor NO, Adekunle AT, Enobakhare DA. Inhibition of colletotrichum gloeosporioides (Penz) Sacc. causal organism of rubber (Hevea brasiliensis Muell. Arg.) leaf spot using plant extracts. Afr J Biotechnol 2007; 6: 213-18.

Allahghadri T, RasoolI I, Owlia P, et al. Antimicrobial property, antioxidant capacity and cytotoxicity of essential oil from cumin produced in Iran. J Food Sci 2010; 75: H54-H61. https://doi.org/10.1111/j.1750-3841.2009.01467.x

Sylvester PW. Optimization of the tetrazolium dye (MTT) colorimetric assay for cellular growth and viability. Meth Mol Biol 2011; 716: 157-68. https://doi.org/10.1007/978-1-61779-012-6_9

Favre B, Hofbauer B, Hildering K, Ryder NS. Comparison of in vitro activities of 17 antifungal drugs against a panel of 20 dermatophytes by using a microdilution assay. J Clin Microbiol 2003; 17: 41-8. https://doi.org/10.1128/JCM.41.10.4817-4819.2003

Morgan DJ, Liang SY, Smith CL, et al. Frequent multidrugresistant Acinetobacter baumannii contamination of gloves, gowns, and hands of healthcare workers. Infect Control Hosp Epidemiol 2010; 31: 716-21. https://doi.org/10.1086/653201

Aggarwal KK, Khanuja SPS, Ahmad A, Kumar TRS, Gupta VK, Kumar S. Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils of Mentha spicita and Anethum sowa. Flav Frag J 2020; 17: 59-63. https://doi.org/10.1002/ffj.1040

Viljoen A, Vuuren SV, Ernst E, et al. Osmitopsis asteriscoides (Asteraceae) – the antimicrobial and essential oil composition of a Cape-Dutch remedy. J Ethnopharmacol 2003; 88: 137-43. https://doi.org/10.1016/S0378-8741(03)00191-0

Nickavar B, Alinaghi A, Kamalinejad M. Evaluation of the antioxidant properties of five Mentha species. Iran J Pharm 2008; 7: 203-09.

Mayaud L, Carricajo A, Zhiri A, Aubert G. Comparison of bacteriostatic and bactericidal activity of 13 essential oils against strains with varying sensitivity to antibiotics. Lett Appl Microbiol 2008; 47: 167-73. https://doi.org/10.1111/j.1472-765X.2008.02406.x

Baser KH. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr Pharm Des 2008; 14: 3106-19. https://doi.org/10.2174/138161208786404227

Al-Janabi KW, Alazawi FN, Ibrahim Mohammed M, Kadhum AA, Mohamad AB. Chlorophenols in tigris river and drinking water of baghdad, Iraq. Bull Environ Contam Toxicol 2011; 87: 106-12. https://doi.org/10.1007/s00128-011-0315-y

Saghi H, Bahador A, Dastjerdi FA, et al. Antibacterial effects of origanum vulgare essence against multidrug-resistant Acinetobacter baumannii isolated from selected hospitals of Tehran, Iran. Avicenna J Clin Microb Infec 2015; 2: e22982. https://doi.org/10.17795/ajcmi-22982

Sakkas H, Gousia P, Economou V, Sakkas V, Petsios S, Papadopoulou C. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates. J Intercult Ethnopharmacol 2016; 5: 212-18. https://doi.org/10.5455/jice.20160331064446

Abdullah BH, Hatem SF, Jumaa W. A Comparative study of the antibacterial activity of clove and rosemary essential oils on multidrug resistant bacteria. UK J Pharm Biosci 2015; 3: 19-22. https://doi.org/10.20510/ukjpb/3/i1/89220

Yap PSX, Yiap BC, Ping HC, Lim SHE. Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol J 2014; 8: 6-14. https://doi.org/10.2174/1874285801408010006

Downloads

Published

2020-04-20

Issue

Section

Articles