Sensing Device for Breath Rate Monitoring Fabricated by using Geomorphic Natural Clinoptilolite

Authors

  • Gianfranco Carotenuto Institute for Polymers, Composites and Biomaterials, National Research Council, Piazzale E. Fermi, 1 – 80055, Portici (NA), Italy

DOI:

https://doi.org/10.12970/2311-1755.2020.08.02

Keywords:

 Geomorphic zeolite, natural clinoptilolite, water sensor, breath rate, spirogram.

Abstract

The possibility of using slices of geomorphic clinoptilolite of natural origin in the fabrication of humidity sensors for personal spirometers and breath rate monitors has been investigated. These water sensors have shown to be fast-responding and therefore adequate for detecting all minimal variations in the ventilation activity. This type of sensor could allow to count the number of breathing events during a time interval (breath rate) and in combination with fast datalogging systems could be potentially exploited to draw accurate spirograms of the hexalation process. Signal detection can be based on the current intensity increase or on the voltage-drop, which follows to breath exposition, and the approach based on voltage-drop has shown to be very sensitive.

References

Derakhshankhah H, Jafari S, Sarvari S, et al. Biomedical applications of zeolitic nanoparticles, with an emphasis on medical interventions. Int J Nanomed 2020; 15: 363-386. https://doi.org/10.2147/IJN.S234573

Joughehdoust S, Manafi S. Application of zeolite in biomedical engineering: a review, in Proc. of the Iran International Zeolite Conference (IIZC’08). April 29 - May1, 2008; Theran – Iran.

Ghobarkar H, Schäf O, Guth U. Zeolites – from kitchen to space. Prog Solid St Chem 1999; 27: 29-73. https://doi.org/10.1016/S0079-6786(00)00002-9

Wernert V, Scäf O, Ghobarkar H, Denoyel R. Adsorption properties of zeolites for artificial kidney applications. Microporous Mesoporous Mater 2005; 83: 101-113. https://doi.org/10.1016/j.micromeso.2005.03.018

Hovhannisyan V, Dong C-Y, Chen SJ. Photodynamic dye adsorption and release performance of natural zeolite. Sci Rep 2017; 7: 45503. https://doi.org/10.1038/srep45503

Mgbemere HE, Ekpe IC, Lawal GI. Zeolite synthesis, characterization and application areas: a review. Int J Sci Environ Technol 2017; 6(10): 45-59.

Li Y, Li H, Xiao L, et al. Hemostatic efficiency and wound healing properties of natural zeolite granules in a lethal rabbit model of complex groin injury. Materials 2012; 5: 2586-2596. https://doi.org/10.3390/ma5122586

Ninan N, Grohens Y, Elain A, Kalarikkal N, Thomas S. Synthesis and characterization of gelatine/zeolite porous scaffold. Eur Polym J 2013; 49(9): 2433-2445. https://doi.org/10.1016/j.eurpolymj.2013.02.014

Concepciòn-Rosabal B, Rodriguez-Fuentes G, SimònCarballo R. Development and featuring of the zeolitic active principle FZ: A glucose adsorbent. Zeolites 1997; 19: 47-50. https://doi.org/10.1016/S0144-2449(97)00022-5

Freeman DC, Stamires DN. Electrical conductivity of synthetic crystalline zeolites. J Chem Phys 1961; 35: 799. https://doi.org/10.1063/1.1701219

Cretikos MA, Bellomo R, Hillman K, Chen J, Finfer S, Flabouris A. Respiratory rate: the neglected vital sign. Med J Aust 2008; 188(11): 657-659. https://doi.org/10.5694/j.1326-5377.2008.tb01825.x

Urbiztondo M, Pellejero I, Rodriguez A, Pina MP, Santamaria J. Zeolite-coated interdigital capacitors for humidity sensing. Sens Actuators B Chem 2011; 157: 450-459. https://doi.org/10.1016/j.snb.2011.04.089

Zou J, He H, Dong J, Long Y. A guest/host material of LiCl/HSTI (stilbite) zeolite assembly: preparation, characterization and humidity-sensitive properties. J Mater Chem 2004; 14: 2405-2411. https://doi.org/10.1039/b316040h

Niesters M, Mahajan R, Olofsen E, et al. Validation of a novel respiratory rate monitor based on exhaled humidity. Br J Anaesth 2012; 109(6): 981-9. https://doi.org/10.1093/bja/aes275

Carotenuto G, Camerlingo C. Kinetic investigation of water physisorption on natural clinoptilolite at room temperature. Microporous Mesoporous Mater 2020; 302: 110238. https://doi.org/10.1016/j.micromeso.2020.110238

Lin CCH, Dambrowitz KA, Kuznicki SM, Evolving applications of zeolite molecular sieves. Can J Chem Eng 2012; 90: 207- 216. https://doi.org/10.1002/cjce.20667

Alsawalha M, Overview of current and future perspectives of Saudi Arabian natural clinoptilolite zeolite: a case review. J Chem 2019; 3153471. https://doi.org/10.1155/2019/3153471

Carotenuto G. A new method to detect zeolite breath sensor response based on low-power square-wave sources. Eur J Eng Res Sci 2019; 48: 152-154. https://doi.org/10.24018/ejers.2019.4.10.1594

Sprynskyy M, Golembiewski R, Trykowski G, Buszewski B. Heterogeneity and hierarchy of clinoptilolite porosity. J Phys Chem Solids 2010; 71: 1269-1277. https://doi.org/10.1016/j.jpcs.2010.05.006

Jakobsson S. Determination of Si/Al ratios in semicrystalline aluminosilicate by FT-IR spectroscopy. Appl Spectrosc 2002; 56(6): 797-799. https://doi.org/10.1366/000370202760077559

Burton AW, Ong K, Rea T, Chan IY. On the estimation of average cristallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with onedimensional pore systems. Microporous Mesoporous Mater 2009; 117: 75-90. https://doi.org/10.1016/j.micromeso.2008.06.010

Downloads

Published

2020-04-20

Issue

Section

Articles