Revisiting the Culture of Latent Stage Mycobacterium smegmatis on a Standard Agar Plate

Authors

  • Yie-Vern Lee Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia/em>
  • Yee Siew Choong Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia

DOI:

https://doi.org/10.12970/2311-1755.2018.06.03

Keywords:

 Mycobacterium smegmatis, Latent stage culture, Medium and inoculum selection, Spreading method, Bacterial lawn for disc diffusion assay.

Abstract

Disc diffusion assay is a basic and initial test in the search for potential inhibitor against bacteria, including high pathogenic bacteria, i.e. Mycobacterium tuberculosis. Mycobacterium smegmatis, due to the characteristics of non-pathogenic, fast growing and can be handled by Biosafety Level 1 facility, is therefore widely used as the replacing model to study M. tuberculosis. However, Mycobacterium spp. can exist in active and latent stage by utilizes different metabolism pathway. Under the circumstances of nutrient or oxygen depletion, Mycobacterium spp. shift the energy generation cycle from tricarboxylic acid cycle (Krebs cycle) to glyoxylate cycle to progress into latent stage. It is challenging to obtain Mycobacterium spp. at latent stage. Here, we revisited the preparation of latent form M. smegmatis. We reported the medium, supplement and inoculum size to produce a reasonable lawn of M. smegmatis in a standard agar plate.

References

Koseki Y, Kinjo T, Kobayashi M, Aoki S. Identification of novel antimycobacterial chemical agents through the in silico multi-conformational structure-based drug screening of a large-scale chemical library. Eur J Med Chem 2013; 60: 333- 339. https://10.1016/j.ejmech.2012.12.012

Agrawal P, Miryala S, Varshney U. Use of Mycobacterium smegmatis deficient in ADP-ribosyltransferase as surrogate for Mycobacterium tuberculosis in drug testing and mutation analysis. PLoS One 2015; 10: e0122076. https://10.1371/journal.pone.0122076

Tiwari R, Miller PA, Chiarelli LR, Mori G, Sarkan M, Centarova I, Cho S, Mikusova K, Franzblau SG, Oliver AG, Miller MJ. Design, syntheses, and anti-TB activity of 1,3- benzothiazinone azide and click chemistry products inspired by BTZ043. ACS Med Chem Lett 2016; 7: 266-270. https://10.1021/acsmedchemlett.5b00424

Koseki Y, Kanetaka H, Tsunosaki J, Munier-Lehmann H, Aoki S. Tetrahydro-2-furanyl-2,4(1H,3H)-pyrimidinedione derivatives as novel antibacterial compounds against Mycobacterium. Int J Mycobacteriol 2017; 6: 61-69. https://10.4103/2212-5531.201893

Yagi A, Uchida R, Hamamoto H, Sekimizu K, Kimura KI, Tomoda H. Anti-Mycobacterium activity of microbial peptides in a silkworm infection model with Mycobacterium smegmatis. J Antibiot (Tokyo) 2017; 70: 685-690. https://10.1038/ja.2017.23

Tyagi JS, Sharma D. Mycobacterium smegmatis and tuberculosis. Trends Microbiol 2002; 10: 68-69. https://10.1016/S0966-842X(01)02296-X

Andreu N, Soto CY, Roca I, Martin C, Gibert I. Mycobacterium smegmatis displays the Mycobacterium tuberculosis virulence-related neutral red character when expressing the Rv0577 gene. FEMS Microbiol Lett 2004; 231: 283-289. https://10.1016/S0378-1097(04)00008-4

Ahangar MS, Khandokar Y, Nasir N, Vyas R, Biswal BK. HisB from Mycobacterium tuberculosis: cloning, overexpression in Mycobacterium smegmatis, purification, crystallization and preliminary X-ray crystallographic analysis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67: 1451-1456. https://10.1107/S1744309111037201

Chauviac FX, Bommer M, Yan J, Parkin G, Daviter T, Lowden P, Raven EL, Thalassinos K, Keep NH. Crystal structure of reduced MsAcg, a putative nitroreductase from Mycobacterium smegmatis and a close homologue of Mycobacterium tuberculosis Acg. J Biol Chem 2012; 287: 44372-44383. https://10.1074/jbc.M112.406264

Junqueira-Kipnis AP, de Oliveira FM, Trentini MM, Tiwari S, Chen B, Resende DP, Silva BD, Chen M, Tesfa L, Jacobs WR, Jr., Kipnis A. Prime-boost with Mycobacterium smegmatis recombinant vaccine improves protection in mice infected with Mycobacterium tuberculosis. PLoS One 2013; 8: e78639. https://10.1371/journal.pone.0078639

Tsolaki AG, Nagy J, Leiva S, Kishore U, Rosenkrands I, Robertson BD. Mycobacterium tuberculosis antigen 85B and ESAT-6 expressed as a recombinant fusion protein in Mycobacterium smegmatis elicits cell-mediated immune response in a murine vaccination model. Mol Immunol 2013; 54: 278-283. https://10.1016/j.molimm.2012.11.014

Tirado Y, Puig A, Alvarez N, Borrero R, Aguilar A, Camacho F, Reyes F, Fernandez S, Perez JL, Acevedo R, Mata Espinoza D, Payan JA, Garcia ML, Kadir R, Sarmiento ME, Hernandez-Pando R, Norazmi MN, Acosta A. Mycobacterium smegmatis proteoliposome induce protection in a murine progressive pulmonary tuberculosis model. Tuberculosis (Edinb) 2014; 101: 44-48. https://10.1016/j.tube.2016.07.017

Sha S, Shi X, Deng G, Chen L, Xin Y, Ma Y. Mycobacterium tuberculosis Rv1987 induces Th2 immune responses and enhances Mycobacterium smegmatis survival in mice. Microbiol Res 2017; 197: 74-80. https://10.1016/j.micres.2017.01.004

Li JM, Li N, Zhu DY, Wan LG, He YL, Yang C. Isocitrate lyase from Mycobacterium tuberculosis promotes survival of Mycobacterium smegmatis within macrophage by suppressing cell apoptosis. Chin Med J (Engl) 2008; 121: 1114-1119.

Rinaggio J. Tuberculosis. Dent Clin N Am 2003; 47: 449-465. https://10.1016/S0011-8532(03)00015-6

Russell DG, Barry CE, 3rd, Flynn JL. Tuberculosis: what we don't know can, and does, hurt us. Science 2010; 328: 852- 856. https://10.1126/science.1184784

Dunn MF, Ramirez-Trujillo JA, Hernandez-Lucas I. Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. Microbiology 2009; 155: 3166-3175. https://10.1099/mic.0.030858-0

Smith CV, Huang C-c, Miczak A, Russell DG, Sacchettini JC, Honer zu Bentrup K. Biochemical and structural studies of malate synthase from Mycobacterium tuberculosis. J Biol Chem 2003; 278: 1735-1743. https://10.1074/jbc.M209248200

Peñuelas-Urquides K, Villarreal-Treviño L, Silva-Ramírez B, Rivadeneyra-Espinoza L, Said-Fernández S, de León MB. Measuring of Mycobacterium tuberculosis growth. A correlation of the optical measurements with colony forming units Braz J Microbiol 2013; 44: 287-289. https://10.1590/S1517-83822013000100042

Downloads

Published

2018-05-18

Issue

Section

Articles