Bioactivity and Antibacterial Effects of Ag-Ca-P Doped PEO Titania Coatings

Authors

  • Luciane S. Santos Department of Mechanical Engineering, Polytechnic School, Pontifícia Universidade Católica do Paraná, Curitiba – PR 80215-901 Brazil
  • Dhanna Francisco Department of Mechanical Engineering, Polytechnic School, Pontifícia Universidade Católica do Paraná, Curitiba – PR 80215-901 Brazil
  • Evelyn Leite Dentistry Department, Universidade Estadual de Ponta Grossa, Ponta Grossa - PR, 84010-290 Brazil
  • Sheron Cogo Health Science Department, Pontifícia Universidade Católica do Paraná, Curitiba – PR 80215-901 Brazil and Department of Mechanical Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523 USA
  • Marcela Dias-Netipanyj Health Science Department, Pontifícia Universidade Católica do Paraná, Curitiba – PR 80215-901 Brazil and Department of Mechanical Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523 USA
  • Shelon Pinto Dentistry Department, Universidade Estadual de Ponta Grossa, Ponta Grossa - PR, 84010-290 Brazil
  • Selene Espósito Health Science Department, Pontifícia Universidade Católica do Paraná, Curitiba – PR 80215-901 Brazil
  • Ketul Popat Department of Mechanical Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523 USA
  • Paulo Soares Department of Mechanical Engineering, Polytechnic School, Pontifícia Universidade Católica do Paraná, Curitiba – PR 80215-901 Brazil

DOI:

https://doi.org/10.12970/2311-1755.2018.06.02

Keywords:

Plasma electrolytic oxidation, titanium, bactericidal coating, silver

Abstract

Implant centered infections remain as one of the main complications associated with the use of biomedical implants. These infections can be avoided with the development of bactericidal coatings that prevent bacterial contamination since the very early stage of implantation. However, a multifunctional coating should inhibit bacterial contamination without generating cytotoxic responses. To achieve this purpose, this work presents a comparative evaluation of coatings with different concentrations of Ag. Coatings containing silver, calcium and phosphorous were obtained by plasma electrolytic oxidation (PEO) and its bactericidal activity and cytotoxicity were evaluated against Staphylococcus aureus and adipose derived stem cells (ADSC), respectively. Silver, calcium and phosphorous were successfully incorporated in the coatings and silver has not affected the coating morphology nor the crystalline structure. ADSC viability was unaltered by cell growth over the surfaces, despite the observation of thinner cells on coatings with higher silver content. After 24 h of incubation, bactericidal activity was observed in coatings with more than 0.6 % at. Ag incorporated, while coatings with 0.2 % at. Ag presented an increased bacterial proliferation indicating a hormetic response. Thus, Ag-CaP-TiO2 coating could be a potential solution for the prevention of implant infections.

References

Hahn F, Zbinden R, Min K. Late implant infections caused by Propionibacterium acnes in scoliosis surgery. Eur Spine J 2005; 14: 783-788. https://doi.org/10.1007/s00586-004-0854-6

Zimmerli W, Ochsner PE. Management of infection associated with prosthetic joints. Infection 2003; 31: 99-108. https://doi.org/10.1007/s15010-002-3079-9

Renvert S, Roos-Jansaker A-M, Lindahl C, Renvert H, Rutger PG. Infection at titanium implants with or without a clinical diagnosis of inflammation. Clin Oral Implants Res 2007; 18: 509-16. https://doi.org/10.1111/j.1600-0501.2007.01378.x

Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med 2004; 350: 1422-9. https://doi.org/10.1056/NEJMra035415

Nelson GN, Davis DE, Namdari S. Outcomes in the treatment of periprosthetic joint infection after shoulder arthroplasty: a systematic review. J Shoulder Elbow Surg 2016; 2016; 25(8): 1337-45. https://doi.org/10.1016/j.jse.2015.11.064

Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J. Economic burden of periprosthetic joint infection in the United States. J Arthroplasty 2012; 27(8 Suppl): 61-5. https://doi.org/10.1016/j.arth.2012.02.022

Willey M, Karam M. Impact of infection on fracture fixation. Orthop Clin North Am 2016; 47(2): 357-64. https://doi.org/10.1016/j.ocl.2015.09.004

Yue C, Zhao B, Ren Y, Kuijer R, van der Mei HC, Busscher HJ, Rochford ETJ. The implant infection paradox: why do some succeed when others fail? Opinion and discussion paper. Eur Cell Mater 2015; 29: 303-13. https://doi.org/10.22203/eCM.v029a23

Berend KR, Lombardi Jr AV, Morris MJ, Bergeson AG, Adams JB, Sneller MA. Two-stage treatment of hip periprosthetic joint infection is associated with a high rate of infection control but high mortality. Clin Orthop Relat Res 2013; 471(2): 510-18. https://doi.org/10.1007/s11999-012-2595-x

Zhao L, Chu PK, Zhang Y, Wu Z. Antibacterial coatings on titanium implants. J Biomed Mater Res Part B Appl Biomater 2009; 91B(1): 470-80. https://doi.org/10.1002/jbm.b.31463

Fielding GA, Roy M, Bandyopadhyay A, Bose S. Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Acta Biomater 2012; 8(8): 3144-52. https://doi.org/10.1016/j.actbio.2012.04.004

Fordham WR, Redmond S, Westerland A, Cortes EG, Walker C, Gallagher C, Medina CJ, Waecther F, Lunk C, Ostrum RF, Caputo GA, Hettinger JD, Krchnavek RR. Silver as a bactericidal coating for biomedical implants. Surf Coatings Technol 2014; 253, 52-7. https://doi.org/10.1016/j.surfcoat.2014.05.013

Ewald A, Glückermann SK, Thull R, Gbureck U. Antimicrobial titanium/silver PVD coatings on titanium. Biomed Eng Online 2006; 5: 22. https://doi.org/10.1186/1475-925X-5-22

Ding X, Yang C, Lim TP, Hsu LY, Engler AC, Hedrick JL, Yang YY. Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers. Biomaterials 2012; 33(28): 6593-603. https://doi.org/10.1016/j.biomaterials.2012.06.001

Li H, Gao Y, Li C, Ma G, Shang Y, Sun Y. A comparative study of the antibacterial mechanisms of silver ion and silver nanoparticles by Fourier transform infrared spectroscopy. Vib Spectrosc 2016; 85: 112-21. https://doi.org/10.1016/j.vibspec.2016.04.007

Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 2000; 52: 662-68. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3

Park HJ, Kim JY, Kim J, Lee JH, Hahn JS, Gu MB, Yoon J. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 2009; 43(4): 1027-32. https://doi.org/10.1016/j.watres.2008.12.002

Lin B, Luo Y, Teng Z, Zhang B, Zhou B, Wang Q. Development of silver/titanium dioxide/chitosan adipate nanocomposite as an antibacterial coating for fruit storage. LWT Food Sci Technol 2015; 63: 1206-13. https://doi.org/10.1016/j.lwt.2015.04.049

Yoon KY, Byeon JH, Park CW, Hwang J. Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers. Environ Sci Technol 2008; 42(4): 1251-55. https://doi.org/10.1021/es0720199

Miaśkiewicz-Peska E, Łebkowska M. Effect of antimicrobial air filter treatment on bacterial survival. Fibres Text East Eur 2011; 84: 73-7.

Lv Y, Liu H, Wang Z, Liu S, Hao L, Sang Y, Liu D, Wang J, Boughton RI. Silver nanoparticle-decorated porous ceramic composite for water treatment. J Memb Sci 2009; 331: 50-6. https://doi.org/10.1016/j.memsci.2009.01.007

de Moura MR, Mattoso LHC, Zucolotto V. Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J Food Eng 2012; 109(3) 520-24. https://doi.org/10.1016/j.jfoodeng.2011.10.030

Paladini F, Cooper IR, Pollini M. Development of antibacterial and antifungal silver-coated polyurethane foams as air filtration units for the prevention of respiratory diseases. J Appl Microbiol 2014; 116(3): 710-17. https://doi.org/10.1111/jam.12402

Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, Choi J, Hyun JW. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 2011; 201(1): 92-100. https://doi.org/10.1016/j.toxlet.2010.12.010

Xue Y, Zhang T, Zhang B, Gong F, Huang Y, Tang M. Cytotoxicity and apoptosis induced by silver nanoparticles in human liver HepG2 cells in different dispersion media. J Appl Toxicol 2016; 36(3): 352-60. https://doi.org/10.1002/jat.3199

Trop M, Novak M, Rodl S, Hellbom B, Kroell W, Goessler W. Silver-coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J Trauma Inj Infect Crit Care 2006; 60(3): 648-52. https://doi.org/10.1097/01.ta.0000208126.22089.b6

Jiravova J, Tomankova KB, Harvanova M, Malina L, Malohlava J, Luhova L, Panacek A, Manisova B, Kolarova H. The effect of silver nanoparticles and silver ions on mammalian and plant cells in vitro. Food Chem Toxicol 2016; 96: 50-61. https://doi.org/10.1016/j.fct.2016.07.015

Sakai N, Aoki M, Miyazawa S, Akita M, Takezaki S, Kawana S. A case of generalized argyria caused by the use of silver protein as a disinfection medicine. Acta Derm Venereol 2007; 87(2): 186-7. https://doi.org/10.2340/00015555-0180

Karakasli A, Hapa O, Akdeniz O, Havitcioğlu H. Dermal argyria: Cutaneous manifestation of a megaprosthesis for distal femoral osteosarcoma. Indian J Orthop 2014; 48(3): 326-8. https://doi.org/10.4103/0019-5413.132528

Raphel J, Holodniy M, Goodman SB, Heilshorn SC. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials 2016; 84: 301-14. https://doi.org/10.1016/j.biomaterials.2016.01.016

AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009; 3(2): 279-90. https://doi.org/10.1021/nn800596w

Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ. Plasma electrolysis for surface engineering. Surf Coatings Technol 1999; 122(2-3): 73-93. https://doi.org/10.1016/S0257-8972(99)00441-7

Zhang W, Du K, Yan C, Wang F. Preparation and characterization of a novel Si-incorporated ceramic film on pure titanium by plasma electrolytic oxidation. Appl Surf Sci 2008; 254(16): 5216-23. https://doi.org/10.1016/j.apsusc.2008.02.047

Krupa D, Baszkiewicz J, Zdunek J, Smolik J, SŁomka Z, Sobczak JW. Characterization of the surface layers formed on titanium by plasma electrolytic oxidation. Surf Coatings Technol 2010; 205(6): 1743-49. https://doi.org/10.1016/j.surfcoat.2010.05.015

Laurindo CAH, Torres RD, Mali SA, Gilbert JL, Soares P. Incorporation of Ca and P on anodized titanium surface: Effect of high current density. Mater Sci Eng C 2014; 37(1): 223-31. https://doi.org/10.1016/j.msec.2014.01.006

Quintero D, Galvis O, Calderón JA, Castaño JG, Echeverría F. Effect of electrochemical parameters on the formation of anodic films on commercially pure titanium by plasma electrolytic oxidation. Surf Coatings Technol 2014; 258: 1223-31. https://doi.org/10.1016/j.surfcoat.2014.06.058

Ribeiro AR, Oliveira F, Boldrini LC, Leite PE, Falagan-Lotsch P, Linhares ABR, Zambuzzi WF, Fragneaud B, Campos APC, Gouvêa CP, Archanjo BS, Achete CA, Marcantonio E, Rocha LA, Granjeiro JM. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications. Mater Sci Eng C Mater Biol Appl 2015; 54:196-206. https://doi.org/10.1016/j.msec.2015.05.012

Sul Y-T, Johansson CB, Albrektsson T. Oxidized titanium screws coated with calcium ions and their performance in rabbit bone. Int J Oral Maxillofac Implants 2002; 17: 625-34.

Song WH, Jun YK, Han Y, Hong SH. Biomimetic apatite coatings on micro-arc oxidized titania. Biomaterials 2004; 25: 3341-49. https://doi.org/10.1016/j.biomaterials.2003.09.103

Li Y, Lee IS, Cui FZ, Choi SH. The biocompatibility of nanostructured calcium phosphate coated on micro-arc oxidized titanium. Biomaterials 2008; 29(13): 2025-32. https://doi.org/10.1016/j.biomaterials.2008.01.009

Ishizawa H, Ogino M. Formation and characterization of anodic titanium oxide films containing Ca and P. J Biomed Mater Res 1995; 29(1): 65-72. https://doi.org/10.1002/jbm.820290110

Calabrese EJ. Hormesis: a revolution in toxicology, risk assessment and medicine. EMBO Rep 2004; 5(S1): S37-S40. https://doi.org/10.1038/sj.embor.7400222

Iavicoli I, Fontana L, Leso V, Calabrese EJ. Hormetic dose-responses in nanotechnology studies. Sci Total Environ 2014; 487: 361-74. https://doi.org/10.1016/j.scitotenv.2014.04.023

Kaplan JB. Antibiotic-induced biofilm formation. Int J Artif Organs 2011; 34(9): 737-51. https://doi.org/10.5301/ijao.5000027

Davies J, Spiegelman GB, Yim G. The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 2006; 9(5): 445-53. https://doi.org/10.1016/j.mib.2006.08.006

Gao A, Hang R, Huang X, Zhao L, Zhang X, Wang L, Tang B, Ma S, Chu PK. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials 2014; 35(13): 4223-35. https://doi.org/10.1016/j.biomaterials.2014.01.058

Lan MY, Liu CP, Huang HH, Lee SW. Both enhanced biocompatibility and antibacterial activity in Ag-decorated TiO2 nanotubes. PLoS One 2013; 8(10): e75364. https://doi.org/10.1371/journal.pone.0075364

Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. PNAS 2010; 107(11): 4872-77. https://doi.org/10.1073/pnas.0903269107

Downloads

Published

2018-04-11

Issue

Section

Articles