Human Platelet Lysates Successfully Replace Fetal Bovine Serum in Adipose-Derived Adult Stem Cell Culture
DOI:
https://doi.org/10.12970/2311-1755.2014.02.01.1Keywords:
Fetal bovine serum, platelet lysates, non-animal alternatives, human adult stem cells, stem cell-based approaches.Abstract
Fetal bovine serum (FBS) is still the gold standard as a cell culture medium additive due to its high level of growth stimulatory factors. Although supplementation of growth media with FBS is common practice in cell and tissue culture, FBS bears a number of disadvantages and its use has been questioned recently: (1) an ill-defined medium supplement, (2) qualitative and quantitative batch-to-batch variations, and (3) animal welfare concerns regarding the harvest of bovine fetal blood.
Recently, we were able to show the capacity of human platelet α-granule lysates to replace FBS in a variety of human and animal cell culture systems. Thus, lysates of human donor platelets may become a valuable non animal-derived substitute for FBS in cultures of mammalian cells and in human and animal stem cell technology.
Stem cells may become the future for human-based alternative to animal testing, in vitro toxicology, and drug safety assessment. New stem cell-based test systems are continuously established, and their performance under animal-derived component free culture conditions has to be defined in prevalidation and validation studies. In order to accomplish these tasks, adipose-derived mesenchymal stem cells (ADSC) were expanded in media supplemented with platelet lysates. Proliferation assays by resazurin and WST-8 compared with direct cell counting confirmed the growth promoting effect of platelet lysate, comparable to high FBS. Furthermore, we established culture conditions that ADSC kept their undifferentiated state as determined by CD73, CD90 and CD105 expression and the lack of negative marker CD45. Preliminary tests whether ADSC can be differentiated towards adipogenic, osteogenic, or chondrogenic phenotypes under platelet lysate supplemented growth conditions were also successful.
References
Gstraunthaler G. Alternatives to the use of fetal bovine serum: serum-free cell culture. ALTEX 2003; 20: 275-81.
Gstraunthaler G, Lindl T. Zell- und Gewebekultur. Allgemeine Grundlagen und spezielle Anwendungen. 7. Aufl., Berlin – Heidelberg: Springer-Spektrum 2013.
van der Valk J, Brunner D, De Smet K, et al. Optimization of chemically defined cell culture media – Replacing fetal bovine serum in mammalian in vitro methods. Toxicol in Vitro 2010; 24: 1053-63. http://dx.doi.org/10.1016/j.tiv.2010.03.016
Brunner D, Frank J, Appl H, et al. Serum-free cell culture: The serum-free media interactive online database. ALTEX 2010; 27: 53-62.
Alston-Roberts C, Barallon R, Bauer SR, et al. Cell line misidentification: the beginning of the end. A Report from the American Type Culture Collection Standards Development Organization Workgroup ASN-0002. Nature Rev Cancer 2010; 10: 441-8.
Gstraunthaler G. The Bologna Statement on Good Cell Culture Practice (GCCP) – 10 years later. Proceedings of the 7th World Congress on Alternatives & Animal Use in the Life Sciences, Rome, Italy, 2009. ALTEX 2010; 27: 141-6.
Cobo F, Cortes JL, Cabrera C, et al. Microbiological contamination in stem cell cultures. Cell Biol Int 2007; 31: 991-5. http://dx.doi.org/10.1016/j.cellbi.2007.03.010
Drexler HG, Uphoff CC. Mycoplasma contamination of cell cultures: Indices, sources, effects, detection, elimination, prevention. Cytotechnology 2002; 39: 75-90. http://dx.doi.org/10.1023/A:1022913015916
Young L, Sung J, Stacey G, Masters JR. Detection of mycoplasma in cell culture. Nature Protocols 2010; 5: 929- 34. http://dx.doi.org/10.1038/nprot.2010.43
Fujimoto B. Fetal bovine serum – supply vs. demand. Art to Science 2002; 21: 1-4.
Gstraunthaler G, Lindl T, van der Valk J. A plea to reduce or replace fetal bovine serum in cell culture media. Cytotechnology 2013; 65: 791-3. http://dx.doi.org/10.1007/s10616-013-9633-8
Giordano A, Galderisi U, Marino IR. From the laboratory bench to the patient’s bedside: An update on clinical trials with mesenchymal stem cells. J Cell Physiol 2007; 211: 27- 35. http://dx.doi.org/10.1002/jcp.20959
Klimanskaya I, Rosenthal N, Lanza R. Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nature Rev Drug Discovery 2008; 7: 131-42. http://dx.doi.org/10.1038/nrd2403
Körbling M, Estrov Z. Adult stem cells for tissue repair – a new therapeutic concept? New Engl J Med 2003; 349: 570- 82. http://dx.doi.org/10.1056/NEJMra022361
Chapin RE, Stedman DB. Endless posibilities: Stem cells and the vision for toxicology testing in the 21st century. Toxicol Sciences 2009; 112: 17-22. http://dx.doi.org/10.1093/toxsci/kfp202
Davila J, Cezar GG, Thiede M, et al. Use and application of stem cells in toxicology. Toxicol Sciences 2004; 79: 214-23. http://dx.doi.org/10.1093/toxsci/kfh100
Leist M, Bremer S, Brundin P, et al. The biological and ethical basis of the use of human embryonic stem cells for in vitro test systems or cell therapy. ALTEX 2008; 25: 163-90.
Leist M, Hartung T, Nicotera P. The dawning of a new age of toxicology. ALTEX 2008: 25: 103-14.
Rohwedel J, Guan K, Hegert C, Wobus AM. Embryonic stem cells as an in vitro model for mutagenicity, cytotoxicity and embryotoxicity: present state and future prospects. Toxicol In Vitro 2001; 15: 741-753. http://dx.doi.org/10.1016/S0887-2333(01)00074-1
Vojnits K, Bremer S. Challenges using pluripotent stem cells for safety assessments of substances. Toxicology 2010; 270: 10-17. http://dx.doi.org/10.1016/j.tox.2009.12.003
Wobus AM, Löser P. Present state and future perspectives of using pluripotent stem cells in toxicology research. Arch Toxicol 2011; 85: 79-117. http://dx.doi.org/10.1007/s00204-010-0641-6
Martin MJ, Muotri A, Gage F, Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nature Med 2005; 11: 228-32. http://dx.doi.org/10.1038/nm1181
Conley BJ. Young JC, Trounson AO, Mollard R. Derivation, propagation and differentiation of human embryonic stem cells. Int J Biochem Cell Biol 2004; 36: 555-67. http://dx.doi.org/10.1016/j.biocel.2003.07.003
Halme DG, Kessler DA. FDA Regulation of stem-cell–based therapies. New Engl J Med 2006; 355: 1730-5. http://dx.doi.org/10.1056/NEJMhpr063086
Klimanskaya I, Chung Y, Meisner L, et al. Human embryonic stem cells derived without feeder cells. Lancet 2005; 365: 1636-41. http://dx.doi.org/10.1016/S0140-6736(05)66473-2
Ludwig TE, Levenstein ME, Jones JM, et al. Derivation of human embryonic stem cells in defined conditions. Nature Biotechnol 2006; 24: 185-7. http://dx.doi.org/10.1038/nbt1177
Mallon BS, Park K-Y, Chen KG, et al. Toward xeno-free culture of human embryonic stem cells. Int J Biochem Cell Biol 2006; 38: 1063-75. http://dx.doi.org/10.1016/j.biocel.2005.12.014
Mannello F, Tonti GA Concise Review: No breakthroughs for human mesenchymal and embryonic stem cell culture. All that glitters is not gold! Stem Cells 2007; 25: 1603-9. http://dx.doi.org/10.1634/stemcells.2007-0127
McDevitt TC, Palecek SP. Innovation in the culture and derivation of pluripotent human stem cells. Curr Opin Biotechnol 2008; 19: 527-33. http://dx.doi.org/10.1016/j.copbio.2008.08.005
Meng G, Liu S, Krawetz R, et al. A novel method for generating xeno-free human feeder cells for human embryonic stem cell culture. Stem Cells Dev 2008; 17: 413- 22. http://dx.doi.org/10.1089/scd.2007.0236
Pedersen RA. Feeding hungry stem cells. Nat Biotechnol 2002; 20: 882-3. http://dx.doi.org/10.1038/nbt0902-882
Richards M, Fong C-Y, Chan W-K, et al. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 2002; 20: 933-6. http://dx.doi.org/10.1038/nbt726
Gospodarowicz D, Ill CR. Do plasma and serum have different abilities to promote cell growth? Proc Natl Acad Sci USA 1980; 77: 2726-30. http://dx.doi.org/10.1073/pnas.77.5.2726
Balk SD, Levine SP, Young LL, et al. Mitogenic factors present in serum but not in plasma. Proc Natl Acad Sci USA 1981; 78: 5656-60. http://dx.doi.org/10.1073/pnas.78.9.5656
Barrientos S, Stojadinovic O, Golinko MS, et al. Growth factors and cytokines in wound healing. Wound Rep Reg 2008; 16: 585-601. http://dx.doi.org/10.1111/j.1524-475X.2008.00410.x
Nurden AT, Nurden P, Sanchez M, et al. Platelets and wound healing. Front Biosci 2008; 13: 3525-48. http://dx.doi.org/10.2741/2947
Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev 2003; 83: 835-70.
Rauch C, Feifel E, Amann E-M, et al. Alternatives to the use of fetal bovine serum: platelet lysates as a serum substitute in cell culture media. ALTEX 2010; 28: 305-16.
Reed GL, Fitzgerald ML, Polgar J. Molecular mechanisms of platelet exocytosis: insights into the secrete life of thrombocytes. Blood 2000; 96: 3334-42.
Rendu F, Brohard-Bohn B. The platelet release reaction: granules´ constituents, secretion and functions. Platelets 2001; 12: 261-73. http://dx.doi.org/10.1080/09537100120068170
Bieback K. Platelet lysates as replacement for fetal bovine serum in mesenchymal stromal cell cultures. Transfus Med Hemother 2013; 40: 326-35. http://dx.doi.org/10.1159/000354061
Bernardo ME, Avanzini MA, Perotti C, et al. Optimization of in vitro expansion of human multipotent mesenchymal stromal cells for cell-therapy approaches: further insights in the search for fetal calf serum substitute. J Cell Physiol 2007; 211: 121-30. http://dx.doi.org/10.1002/jcp.20911
Bieback K, Hecker A, Kocaoemer A, et al. Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells 2009; 27: 2331-41. http://dx.doi.org/10.1002/stem.139
Blande IS, Bassenze V, Lavini-Ramos C, et al. Adipose tissue mesenchymal stem cell expansion in animal serumfree medium supplemented with autologous human platelet lysate. Transfusion 2009; 49: 2680-5. http://dx.doi.org/10.1111/j.1537-2995.2009.02346.x
Doucet C, Ernou I, Zhang Y, Llense J-R, et al. Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. J Cell Physiol 2005; 205: 228-36. http://dx.doi.org/10.1002/jcp.20391
Gruber R, Karreth F, Kandler B, et al. Platelet-released supernatants increase migration and proliferation, and decrease osteogenic differentiation of bone marrow-derived mesenchymal progenitor cells under in vitro conditions. Platelets 2004; 15: 29-35. http://dx.doi.org/10.1080/09537100310001643999
Kocaoemer A, Kern S, Klüter H, Bieback K. Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells 2007; 25: 1270-8. http://dx.doi.org/10.1634/stemcells.2006-0627
Lange C, Cakiroglu F, Spiess A-N, et al. Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J Cell Physiol 2007; 213: 18-26. http://dx.doi.org/10.1002/jcp.21081
Müller AM, Davenport M, Verrier S, et al. Platelet lysate as a serum substitute for 2D static and 3D perfusion culture of stromal vascular fraction cells from human adipose tissue. Tissue Eng A 2009; 15: 869-75. http://dx.doi.org/10.1089/ten.tea.2008.0498
Müller I, Kordowich S, Holzwarth C, et al. Animal serum-free culture conditions for isolation and expansion of multipotent mesenchymal stromal cells from human BM. Cytotherapy 2006; 8: 437-44. http://dx.doi.org/10.1080/14653240600920782
Reinisch A, Bartmann C, Rohde E, et al. Humanized system to propagate cord blood-derived multipotent mesenchymal stromal cells for clinical application. Regen Med 2007; 2: 371-82. http://dx.doi.org/10.2217/17460751.2.4.371
Schallmoser K, Bartmann C, Rohde E, et al. Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion 2007; 47: 1436-46. http://dx.doi.org/10.1111/j.1537-2995.2007.01220.x
Vogel JP, Szalay K, Geiger F, et al. Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics. Platelets 2006; 17: 462-9. http://dx.doi.org/10.1080/09537100600758867
Fraser JK, Wulur I, Alfonso Z, Hedrick MH fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 2006; 24: 150-4. http://dx.doi.org/10.1016/j.tibtech.2006.01.010
Gimble JM, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 2003; 5: 362-9. http://dx.doi.org/10.1080/14653240310003026
Kronsteiner B, Wolbank S, Peterbauer A, et al. Human mesenchymal stem cells from adipose tissue and amnion influence T-Cells depending on stimulation method and presence of other immune cells. Stem Cells Dev 2011; 20: 2115-26. http://dx.doi.org/10.1089/scd.2011.0031
Wolbank S, Peterbauer A, Fahrner M, et al. Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue Eng 2007; 13: 1173-83. http://dx.doi.org/10.1089/ten.2006.0313
Wolbank S, Peterbauer A, Wassermann E, et al. Labelling of human adipose-derived stem cells for non-invasive in vivo cell tracking. Cell Tissue Banking 2007; 8: 163-77. http://dx.doi.org/10.1007/s10561-006-9027-7
Zuk PA. The adipose-derived stem cell: Looking back and looking ahead. Mol Biol Cell 2010; 21: 1783-7. http://dx.doi.org/10.1091/mbc.E09-07-0589
Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13: 4279-95. http://dx.doi.org/10.1091/mbc.E02-02-0105
Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng 2001; 7: 211-28. http://dx.doi.org/10.1089/107632701300062859
Cholewa D, Stiehl T, Schellenberg A, et al. Expansion of adipose mesenchymal stromal cells is affected by human platelet lysate and plating density. Cell Transplant 2011; 20: 1409-22. http://dx.doi.org/10.3727/096368910X557218
Horn P, Bokermann G, Cholewa D, et al. Impact of individual platelet lysates on isolation and growth of human mesenchymal stromal cells. Cytotherapy 2010; 12: 888-98. http://dx.doi.org/10.3109/14653249.2010.501788
Jonsdottir-Buch SM, Lieder R, Sigurjonsson OE. Platelet lysates produced from expired platelet concentrates support growth and osteogenic differentiation of mesenchymal stem cells. PLoS ONE 2013; 8: e68984. http://dx.doi.org/10.1371/journal.pone.0068984
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal dells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315-317. http://dx.doi.org/10.1080/14653240600855905
Pfaller W, Gstraunthaler G, Loidl P. Morphology of the differentiation and maturation of LLC-PK1 epithelia. J Cell Physiol 1990; 142: 247-54. http://dx.doi.org/10.1002/jcp.1041420205
Berridge MV, Tan AS. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 1993; 303: 474-82. http://dx.doi.org/10.1006/abbi.1993.1311
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63. http://dx.doi.org/10.1016/0022-1759(83)90303-4
Scudiero DA, Shoemaker RH, Paull KD, et al. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity using human and other tumor cell lines. Cancer Res 1988; 48: 4827-33.
Jennings P, Koppelstaetter C, Aydin S, et al. Cyclosporine A induces senescence in renal tubular epithelial cells. Am J Physiol Renal Physiol 2007; 293: F831-8. http://dx.doi.org/10.1152/ajprenal.00005.2007
Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niches. Cell 2004; 116: 769- 78. http://dx.doi.org/10.1016/S0092-8674(04)00255-7
Jones DL and Wagers AJ. No place like home: anatomy and function of the stem cell niche. Nature Rev Molec Cell Biol 2008; 9: 11-21. http://dx.doi.org/10.1038/nrm2319
Scadden DT. The stem-cell niche as an entity of action. Nature 2006; 441: 1075-9. http://dx.doi.org/10.1038/nature04957
Snipper HJ, Clevers H. Tracking adult stem cells. EMBO Rep 2011; 12: 113-22. http://dx.doi.org/10.1038/embor.2010.216
Bhogal N, Grindon C, Combes R, Balls M. Toxicity testing: creating a revolution based on new technologies. Trends Biotechnol 2005; 23: 299-307. http://dx.doi.org/10.1016/j.tibtech.2005.04.006
De Kock, J, Rodrigues RM, Bolleyn J, et al. Focus on stem cells as sources of human target cells for in vitro research and testing. ALTEX Proceedings 2012; 1: 541-8.
Pellizzer C, Bremer S, Hartung T. Developmental toxicity testing from animal towards embryonic stem cells. ALTEX 2005; 22: 47-56.
Sartipy P, Björquist P, Strehl R, Hyllner J. The application of human embryonic stem cell technologies to drug discovery. Drug Discov Today 2007; 12: 688-99. http://dx.doi.org/10.1016/j.drudis.2007.07.005
Gottipamula S, Muttigi MS, Kolkundkar U, Seehtaram RN. Serum-free media for the productionm of human mesenchymal stromal cells: a review. Cell Prolif 2013; 46: 608-27. http://dx.doi.org/10.1111/cpr.12063
Tekkatte C, Gunasingh GP, Cherian KM, Sankaranarayanan K. “Humanized” stem cell culture techniques: the animal serum controversy. Stem Cells Int 2011; 2011: 504723. http://dx.doi.org/10.4061/2011/504723
Brindley DA, Davie NL, Culme-Seymor EJ, Mason C, Smith DW, Rowley JA. Peak serum: implications of serum supply for cell therapy manufacturing. Regen Med 2012; 7: 7-13. http://dx.doi.org/10.2217/rme.11.112
Baker M. Stem cells in culture: defining the substrate. Nature Methods 2011; 8: 293-7. http://dx.doi.org/10.1038/nmeth0411-293
Rubin LL Stem cells and drug discovery: the beginning of a new era? Cell 2008; 132: 549-52. http://dx.doi.org/10.1016/j.cell.2008.02.010
Yamanaka S. Induced pluripotent stem cells: Past, present, and future. Cell Stem Cell 2012; 10: 678-83. http://dx.doi.org/10.1016/j.stem.2012.05.005
Balls M. The conflict over animal experimentation: is the field of battle changing? ATLA 2012; 40: 189-91.
Balls M. FRAME and the pharmaceutical industry. ATLA 2012; 40: 295-300.
Bellin M, Marchetto MC, Gage FH, Mummery CL. Induced pluripotent stem cells: the new patient? Nature Rev Molec Cell Biol 2012; 13: 713-26. http://dx.doi.org/10.1038/nrm3448
Grskovic M, Javaherian A, Strulovici B, Daley GQ. Induced pluripotent stem cells – opportunities for disease modelling and drug discovery. Nature Rev Drug Discov 2011; 10: 915- 29.
Park I-H, Arora N, Huo H, et al. Disease-specific induced pluripotent stem cells. Cell 2008; 134: 877-86. http://dx.doi.org/10.1016/j.cell.2008.07.041
StemBANCC – Stem cells for biological assays of novel drugs and predictive toxicology; www.stembancc.org
Basketter DA, Clewell H, Kimber I, et al. A roadmap for the development of alternative (non-animal) methods for systemic toxicity testing. ALTEX 2012; 29: 5-91.
Hartung T. A toxicology for the 21st century – Mapping the road ahead. Toxicol Sciences 2009; 109: 18-23. http://dx.doi.org/10.1093/toxsci/kfp059
Hartung T. Food for thought . . . on cell culture. ALTEX 2007; 24: 143-7.
Hartung T. Are our cell cultures good enough for regulatory decision taking? Plenary Lecture at the 5th Annual Quasi-Vivo User Group Meeting, Liverpool, UK, 2013.