Novel Salmonella spp. Diagnostic Markers Based on the gyrB Gene and its Application on Food and Environmentally-Derived Water Samples

Authors

  • Audrey Leo Melbourne School of Land and Environment, The University of Melbourne, Victoria, 3010, Australia
  • Wei Wei Tow Melbourne School of Land and Environment, The University of Melbourne, Victoria, 3010, Australia
  • Julian Hill Melbourne School of Land and Environment, The University of Melbourne, Victoria, 3010, Australia
  • Jeffrey Robert English Melbourne School of Land and Environment, The University of Melbourne, Victoria, 3010, Australia
  • Rebecca Ford Melbourne School of Land and Environment, The University of Melbourne, Victoria, 3010, Australia

DOI:

https://doi.org/10.12970/2311-1755.2013.01.01.4

Keywords:

 gyrB gene, pathogen detection, PCR, Salmonella, water, food.

Abstract

Salmonellosis is a major cause of gastrointestinal infection that generally occurs through the ingestion of fecally contaminated food or water. Molecular markers based on the gyrase B (gyrB) gene sequence, a Type II DNA topoisomerase subunit enzyme family member, were developed to specifically and sensitively discriminate Salmonella spp. from closely related and collocated microorganisms in a water environment. For this, gyrB gene sequences of Salmonella spp., E. coli, Yersinia enterocolitica, Klebsiella pneumoniae and Shigella spp. were aligned and found up to 88% similar. Markers amplified from primers specific to the Salmonella gyrB sequences were conserved across 13 S. enterica and one S. bongori serovar, and were able to detect approximately one S. Enteritidis genome. These were more specific and sensitive than the international standard invA gene-based Salmonella marker. The gyrB markers detected 725 Salmonella genomes in 100 mL of seeded environmental water sediment sample and 72 Salmonella genomes in 300 g of seeded minced samples. Successful detection of Salmonella in non-inoculated minced samples was also achieved, with higher sensitivity than the invA markers. These makers should be useful in future risk analyses and standards setting for Salmonella presence in food, and water used for irrigation and recreational purposes.

References

Grimont PA, Weill F-X. Antigenic formulae of the Salmonella serovars. WHO Collaborating Centre for Reference and Research on Salmonella, Institut Pasteur, Paris, France 2007.

Helms M, Vastrup P, Gerner-Smidt P, Evans S. Short and long term mortality associated with foodborne bacterial gastrointestinal infections: registry based study Commentary: matched cohorts can be useful. BMJ 2003; 326(7385): 357. http://dx.doi.org/10.1136/bmj.326.7385.357

Angulo FJ, Kirk MD, McKay I, Hall GV, Dalton CB, Stafford R, et al. Foodborne disease in Australia: the OzFoodNet experience. Clin Infect Dis 2008; 47(3): 392-400. http://dx.doi.org/10.1086/589861

iClimate. Waterborne Disease. http://climate.adfi.usq.edu.au/ 75/#. (accessed September 20, 2012).

Dale K, Kirk M, Sinclair M, Hall R, Leder K. Reported waterborne outbreaks of gastrointestinal disease in Australia are predominantly associated with recreational exposure. Aust N Z J Public Health 2010; 34(5): 527-30. http://dx.doi.org/10.1111/j.1753-6405.2010.00602.x

Lemarchand K, Masson L, Brousseau R. Molecular biology and DNA microarray technology for microbial quality monitoring of water. Crit Rev Microbiol 2004; 30(3): 145-72. http://dx.doi.org/10.1080/10408410490435142

Morgan FU, Pallant L, Dwyer B, Forbes D, Rich G, Thompson R. Comparison of PCR and microscopy for detection of Cryptosporidium parvum in human fecal specimens: clinical trial. J Clin Microbiol 1998; 36(4): 995-8.

Rompré A, Servais P, Baudart J, de-Roubin M-R, Laurent P. Detection and enumeration of coliforms in drinking water: current methods and emerging approaches. J Microbiol Methods 2002; 49(1): 31-54. http://dx.doi.org/10.1016/S0167-7012(01)00351-7

Colwell RR, Grimes DJ. Nonculturable microorganisms in the environment: ASM Press 2000. http://dx.doi.org/10.1007/978-1-4757-0271-2

Huq A, Colwell RR. A microbiological paradox: viable but nonculturable bacteria with special reference to Vibrio cholerae. J Food Protection® 1996; 59(1): 96-101.

Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 1998; 73(1): 127-41. http://dx.doi.org/10.1023/A:1000669317571

Foy CA, Parkes HC. Emerging homogeneous DNA-based technologies in the clinical laboratory. Clin Chem 2001; 47(6): 990-1000.

Kwang J, Littledike E, Keen J. Use of the polymerase chain reaction for Salmonella detection. Lett Appl Microbiol 1996; 22(1): 46-51. http://dx.doi.org/10.1111/j.1472-765X.1996.tb01106.x

Rahn K, De Grandis S, Clarke R, McEwen S, Galan J, Ginocchio C, et al. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol Cell Probes 1992; 6(4): 271-9. http://dx.doi.org/10.1016/0890-8508(92)90002-F

Widjojoatmodjo M, Fluit A, Torensma R, Keller B, Verhoef J. Evaluation of the Magnetic Immuno PCR assay for rapid detection of Salmonella. Eur J Clin Microbiol Infect Dis 1991; 10(11): 935-8. http://dx.doi.org/10.1007/BF02005447

Malorny B, Hoorfar J, Bunge C, Helmuth R. Multicenter validation of the analytical accuracy of Salmonella PCR: towards an international standard. Appl Environ Microbiol 2003; 69(1): 290-6. http://dx.doi.org/10.1128/AEM.69.1.290-296.2003

Vantarakis A, Komninou G, Venieri D, Papapetropoulou M. Development of a multiplex PCR detection of Salmonella spp. and Shigella spp. in mussels. Lett Appl Microbiol 2000; 31(2): 105-9. http://dx.doi.org/10.1046/j.1365-2672.2000.00797.x

Nam H-M, Srinivasan V, Gillespie BE, Murinda SE, Oliver SP. Application of SYBR green real-time PCR assay forspecific detection of Salmonella spp. in dairy farm environmental samples. Int J Food Microbiol 2005; 102(2): 161-71. http://dx.doi.org/10.1016/j.ijfoodmicro.2004.12.020

Fey A, Eichler S, Flavier S, Christen R, Höfle MG, Guzmán CA. Establishment of a real-time PCR-based approach for accurate quantification of bacterial RNA targets in water, using Salmonella as a model organism. Appl Environ Microbiol 2004; 70(6): 3618-23. http://dx.doi.org/10.1128/AEM.70.6.3618-3623.2004

Fukushima M, Kakinuma K, Kawaguchi R. Phylogenetic analysis of Salmonella, Shigella, and Escherichia coli strains on the basis of the gyrB gene sequence. J Clin Microbiol 2002; 40(8): 2779-85. http://dx.doi.org/10.1128/JCM.40.8.2779-2785.2002

Kakinuma K, Fukushima M, Kawaguchi R. Detection and identification of Escherichia coli, Shigella, and Salmonella by microarrays using the gyrB gene. Biotechnol Bioeng 2003; 83(6): 721-8. http://dx.doi.org/10.1002/bit.10709

Yamamoto S, Harayama S. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 1995; 61(3): 1104-9.

Watt PM, Hickson ID. Structure and function of type II DNA topoisomerases. Biochem J 1994; 303(Pt 3): 681.

Wang JC. DNA topoisomerases. Annu Rev Biochem 1996; 65(1): 635-92. http://dx.doi.org/10.1146/annurev.bi.65.070196.003223

Chang HR, Loo L, Jeyaseelan K, Earnest L, Stackebrandt E. Phylogenetic relationships of Salmonella typhi and Salmonella typhimurium based on 16S rRNA sequence analysis. Int J Syst Bacteriol 1997; 47(4): 1253-4. http://dx.doi.org/10.1099/00207713-47-4-1253

Wang R-F, Cao W-W, Cerniglia CE. Phylogenetic analysis and identification of Shigella spp. by molecular probes. Mol Cell Probes 1997; 11(6): 427-32. http://dx.doi.org/10.1006/mcpr.1997.0136

Yamamoto S, Harayama S. Phylogenetic analysis of Acinetobacter strains based on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products. Int J Syst Bacteriol 1996; 46(2): 506-11. http://dx.doi.org/10.1099/00207713-46-2-506

Cilia V, Lafay B, Christen R. Sequence heterogeneities among 16S ribosomal RNA sequences, and their effect on phylogenetic analyses at the species level. Mol Biol Evol 1996; 13(3): 451-61. http://dx.doi.org/10.1093/oxfordjournals.molbev.a025606

McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 2001; 413(6858): 852-6. http://dx.doi.org/10.1038/35101614

Rasmussen R. Quantification on the Light Cycler. Rapid cycle real-time PCR: Springer 2001; pp. 21-34. http://dx.doi.org/10.1007/978-3-642-59524-0_3

Hussain MA, Ford R, Hill J. Determination of fecal contamination indicator sterols in an Australian water supply system. Environmental monitoring and assessment. 2010; 165(1-4): 147-57. http://dx.doi.org/10.1007/s10661-009-0934-5

Ford R, Hill J, Malik A, English J, Leo A, Kibria G. A pilot study of microbial pathogen monitoring in the central G-MW water supply system: Final report 2008; ISBN: 1-87635-607- 3.

Trevanich S, Tiyapongpattana S, Miyamoto T. Application of an optimized 18-h method involving one step culturing and single primer-based PCR assay for detection of Salmonella spp. in foods. Food Control 2010; 21(5): 593-8. http://dx.doi.org/10.1016/j.foodcont.2009.08.012

Cheung P-Y, Kam KM. Salmonella in food surveillance: PCR, immunoassays, and other rapid detection and quantification methods. Food Res Int 2012; 45(2): 802-8. http://dx.doi.org/10.1016/j.foodres.2011.12.001

Centers for Disease Control and Prevention. Salmonella surveillance: Annual summary, 2004. Atlanta, Georgia: US Department of Health and Human Services, CDC 2005.

Centers for Disease Control and Prevention. Surveillance for foodborne disease outbreaks – United States, 2006. Morbidity and Mortality weekly Report 2009; 58(22): 609-15.

New Zealand Food Administration Manual. 1995 Microbiolgical Reference Criteria for Food [Report on the internet]. [cited 2012 Sept 23]: Available from: http://www.foodsafety.govt.nz/elibrary/industry/microbiologica l_reference-guide_assess.pdf

Covert TC, Meckes MC. Description of the agent. Waterborne Pathogens 2006; 135.

Hussong D, Enkiri NK, Burge WD. Modified agar medium for detection of Salmonella in composted biosolids. Water Res 1984; 31: 2664-67.

Novinscak A, Surette C, Filion M. Quantification of Salmonella spp. in composted biosolids using a TaqMan qPCR assay. J Microbiol Methods 2007; 70(1): 119-26. http://dx.doi.org/10.1016/j.mimet.2007.03.019

Moganedi K, Goyvaerts E, Venter SN, Sibara M. Optimisation of the PCR-invA primers for the detection of Salmonella in drinking and surface waters following a precultivation step. Water Sa 2007; 33(2).

Hughes D, Dailianis AE, Hill L, McIntyre DA, Anderson A. TECRA Unique Test for rapid detection of Salmonella in food: collaborative study. J AOAC Int 2001; 84(2): 416-29.

Hanai K, Satake M, Nakanishi H, Venkateswaran K. Comparison of commercially available kits with standard methods for detection of Salmonella strains in foods. Appl Environ Microbiol 1997; 63(2): 775-8.

Cheung PY, Kwok K, Kam K. Application of BAX system, Tecra UniqueTM Salmonella test, and a conventional culture method for the detection of Salmonella in ready to eat and raw foods. J Appl Microbiol 2007; 103(1): 219-27. http://dx.doi.org/10.1111/j.1365-2672.2006.03210.x

Ishii K, Fukui M. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl Environ Microbiol 2001; 67(8): 3753-5. http://dx.doi.org/10.1128/AEM.67.8.3753-3755.2001

LaMontagne M, Michel Jr F, Holden P, Reddy C. Evaluation of extraction and purification methods for obtaining PCRamplifiable DNA from compost for microbial community analysis. J Microbiol Methods 2002; 49(3): 255-64. http://dx.doi.org/10.1016/S0167-7012(01)00377-3

Yamada S, Ohashi E, Agata N, Venkateswaran K. Cloning and nucleotide sequence analysis of gyrB of Bacillus cereus, B. thuringiensis, B. mycoides, and B. anthracis and their application to the detection of B. cereus in rice. Appl Environ Microbiol 1999; 65(4): 1483-90.

Behets J, Declerck P, Delaedt Y, Verelst L, Ollevier F. A duplex real-time PCR assay for the quantitative detection of Naegleria fowleri in water samples. Water Res 2007; 41(1): 118-26. http://dx.doi.org/10.1016/j.watres.2006.10.003

Klerks M, Van Bruggen A, Zijlstra C, Donnikov M. Comparison of methods of extracting Salmonella enterica serovar enteritidis DNA from environmental substrates and quantification of organisms by using a general internal procedural control. Appl Environ Microbiol 2006; 72(6): 3879- 86. http://dx.doi.org/10.1128/AEM.02266-05

Liming SH, Bhagwat AA. Application of a molecular beacon—real-time PCR technology to detect Salmonella species contaminating fruits and vegetables. Int J Food Microbiol 2004; 95(2): 177-87. http://dx.doi.org/10.1016/j.ijfoodmicro.2004.02.013

Kumar R, Surendran P, Thampuran N. Rapid quantification of Salmonella in seafood using real-time PCR assay. J Microbiol Biotech 2010; 20(3): 569-73.

Gorski L, Liang AS. Effect of enrichment medium on real-time detection of Salmonella enterica from lettuce and tomato enrichment cultures. J Food Prot 2010; 73(6): 1047-56.

Donovan E, Unice K, Roberts JD, Harris M, Finley B. Risk of gastrointestinal disease associated with exposure to pathogens in the water of the Lower Passaic River. Appl Environ Microbiol 2008; 74(4): 994-1003. http://dx.doi.org/10.1128/AEM.00601-07

Schets F, Van Wijnen J, Schijven J, Schoon H, de Roda Husman A. Monitoring of waterborne pathogens in surface waters in Amsterdam, The Netherlands, and the potential health risk associated with exposure to Cryptosporidium and Giardia in these waters. Appl Environ Microbiol 2008; 74(7): 2069-78. http://dx.doi.org/10.1128/AEM.01609-07

Downloads

Published

2013-02-02

Issue

Section

Articles