Prevalence of Extended-Spectrum Beta-Lactamase, AmpC Beta-Lactamase, and Metallo-Beta-Lactamase among Clinical Isolates of Pseudomonas aeruginosa
DOI:
https://doi.org/10.12970/2311-1755.2013.01.01.3Keywords:
Pseudomonas aeruginosa, AmpC β-lactamase, ESBLs, MBL, plasmid.Abstract
Objectives: to study prevalence of ESBLs, AmpC beta‑lactamase and metallo‑beta‑lactamase among clinical isolates of P. aeruginosa.
Materials and Methods: P. aeruginosa were isolated and identified by the traditional microbiological procedure, ESBLs were detected by combined disk diffusion method according CLSI recommendations, AmpC beta-lactamase was detected by iodometric methods, MBL was detected by disc potentiation test and Agar dilution method for antibiotic susceptibility testing.
Results: Out of 330 samples of different types of infections, 58 were positive for P. aeruginosa. All isolates showed high resistance to most of the tested antimicrobials but showed low resistance to amikacin. Forty-two (72.4%) isolates were detected as β-lactamase producers, 16 (27.5%) isolates were positive for ESBLs while 31(53.4%) were MBL producing strains. All ESBL and MBL producers were highly resistant to the tested antimicrobials. Plasmid profile showed that 9 isolates were plasmid mediated.
Conclusion: The study emphasizes a high prevalence of multidrug-resistant P. aeruginosa producing beta‑lactamase enzymes of diverse mechanisms especially in burn units. Proper antibiotic policy and measures should be taken to minimize the emergence of this multiple β‑lactamase producing pathogens and also the danger of their dissemination to other bacteria by plasmids which may carry resistance genes for other antimicrobials.
References
Pagani L, Mantengoli E, Migliavacca R, Nucleo E, Pollini S, Spalla M, et al. Multifocal detection of multidrug-resistant Pseudomonas aeruginosa producing the PER-1 extended spectrum β -lactamase in northern Italy. J Clin Microbiol 2004; 39: 1865-70.
Zavasci AC, Carvalhaes CG, Picao RC, Gales AC. Multidrug resistant Pseudomonas aeruginosa and Acintobacter baumannii resistance mechanisms and implications for therapy. Expert Rev. Anti Infect Ther 2010; 8: 71-93. http://dx.doi.org/10.1586/eri.09.108
Philippon A, Arlet G, Jacoby GA. Plasmid-determined Amp C type β-lactamases. Antimicrob Agents Chemother 2002; 46: 1-11. http://dx.doi.org/10.1128/AAC.46.1.1-11.2002
Moland ES, Kim S, Hong SG, Keneeth & Thomson. Newer β-lactamases: Clinical & Laboratory Implication Part 1. Clin Microbiol Newslett 2008; 30: 71-78. http://dx.doi.org/10.1016/j.clinmicnews.2008.04.004
Livermore DM, Brown DFJ. Detection of β-lactamase mediated resistance. J Antimicrob Chemother 2001; 35: 281-94.
Ben-Marez K, Rejiba S, Belhadj C, Belhadj O. β-Lactamase mediated resistance to extend spectrum cephalosporins among clinical isolates of Pseudomonas aeruginosa. Res Microbiol 1999; 150: 403-406. http://dx.doi.org/10.1016/S0923-2508(99)80075-8
Poirel L, Lebessi E, Castro M, Fevre C, Foustoukou M, Nordmann P. Nosocomial outbreak of extended-spectrum beta-lactamase SHV-5-producing isolates of Pseudomonas aeruginosa in Athens, Greece. Antimicrob Agents Chemother 2004; 48: 2277-79. http://dx.doi.org/10.1128/AAC.48.6.2277-2279.2004
Lee S, Park YJ, Kim M, Lee HK, Han K, Kang CS, Kang MW. Prevalence of Ambler class A and D beta-lactamase among clinical isolates of Pseudomonas aeruginosa in Korea. J Antimicrob Chemother 2005; 56: 122-27. http://dx.doi.org/10.1093/jac/dki160
Philippon A, Arlet G, Lagrange PH. Origin and impact of plasmid-mediated extended-spectrum beta-lactamases. Eur J Clin Microbiol Infect Dis 1994; 13: 17-29. http://dx.doi.org/10.1007/BF02390681
Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 1995; 39: 1211-33. http://dx.doi.org/10.1128/AAC.39.6.1211
Nordmann P, Poirel L. Emerging carbapenemases in Gram‑negative aerobes. Clin Microbiol Infect 2002; 8: 321‑31. http://dx.doi.org/10.1046/j.1469-0691.2002.00401.x
Cormican MG, Marshall SA, Jones RN. Detection of extended-spectrum beta-lactamase (ESBL)-producing strains by the E-test screen. J Clin Microbiol 1996; 34: 1880-84.
Carter MW, Oakton KJ, Warner M, Livermore DM. Detection of extended-spectrum beta-lactamases in klebsiellae with the Oxoid combination disk method. J Clin Microbiol 2000; 38: 4228-32.
Tzelepi E, Giakkoupi A, Sofianou D, Loukova V, Kemeroglou A, Tsakris A. Detection of extended-spectrum beta-lactamases in clinical isolates of Enterobacter cloacae and Enterobacter aerogenes. J Clin Microbiol 2000; 38: 542-46.
Wolska MK, Bukowski K, Jakubczak A. Occurrence of betalactamase type ESBL and IBL in Pseudomonas aeruginosa rods. Med Dosw Mikrobiol 2001; 53: 45-51.
Sheretz RJ, Raad IL, Balani A. Three-year experience with sonicated vascular catheter cultures in a clinical microbiology laboratory. J Clin Microbiol 1990; 28: 76-82.
Benson HC. Microbiological Application: Laboratory manual in general microbiology, 11thed., McGram-Hill Higher Education, Sanfrancisco 2002; p. 168.
Clinical and laboratory standards institutes. Performance standards for antimicrobial susceptibility testing. Twenty first informational supplement M100-S21. Wayne, PA: CLSI 2011.
Sykes RB. Methods for detecting β-lactamases. In Laboratory methods in antimicrobial chemotherapy, edited by Reeves SD, Philips I, Williams JD, Wise R. Churchill Livingston, Edinburgh 1976; pp. 64-9.
Eliopoulos GM, Moellering RC. Antimicrobial combinations in antibiotics in laboratory medicine 4th edition. Edited by: Victor Lorian. Williams & Wikins 1996; pp. 330-396.
Sanders CC, Sanders WE, Goering RV. In vitro antagonism of beta-lactam antibiotics by Cefoxitin. Antimicrob agents Chemother 1982; 21: 968-75. http://dx.doi.org/10.1128/AAC.21.6.968
Varaiya A, Kulkarni M, Bhalekar P, Dogra J. Incidence of metallo beta lactamase producing pseudomonas aeruginosa in ICU patients. Indian J Med Res 2008; 398-402.
Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-β-lactamase: the Quiet before the storm? Clin Microbiol Rev 2005; 18: 306-25. http://dx.doi.org/10.1128/CMR.18.2.306-325.2005
Crosa JH, Tolmasky ME, Actis LA, Falkow S. plasmids, In: Gerhardt P, Murray RGE, Wood WA, Kreig NR, Editors. Methods for general and molecular bacteriology. American society for Microbiology, Washington 1994; pp. 365-386.
Bonfiglio G, Livermore DM. ß-lactamase types amongst Staphylococcus aureus isolates in relation to susceptibility to ß-lactam inhibitor combinations. Antimicrob Chemother 1994; 33: 465-81. http://dx.doi.org/10.1093/jac/33.3.465
Livermore DM. Multicentre evaluation of the VITEK 2 Advanced Expert System for interpretive reading of antimicrobial resistance tests. J Antimicrob Chemother 2002; 49: 289-300. http://dx.doi.org/10.1093/jac/49.2.289
Arora S, Bal M. Amp C β-lactamases producing bacterial isolates from Kolkata hospital. Indian J Med Res 2005; 224-33.
Mahmoud AB, Zahran WA, Hindawi GR, Labib AZ, Galal R. Prevalence of Multidrug-Resistant Pseudomonas aeruginosa in Patients with Nosocomial Infections at a University Hospital in Egypt, with Special Reference to Typing Methods. J Virol Microbiol 2013.
Okesola AO, Oni AA. Occurrence of extended-spectrum β-lactamase producing Pseudomonas aeruginosa strains in South-West Nigeria. Res J Med Sci 2012; 6: 93-96.
Aggarwal R, Chaudhary U, Bala K. Detection of extended spectrum beta lactamase in Pseudomonas aeruginosa. Indian J Patho Microbiol 2008; 51: 222-24. http://dx.doi.org/10.4103/0377-4929.41693
Ali AM, Abbasi SA, Ahmed M. Frequency of ESβLs Producing Nosocomial Isolates in a Tertiary Care Hospital in Rawalpindi. Pak Armed Forces Med J 2009; 12: 23-28.
Anjum F, Mir A. Susceptibility Pattern of P. aeruginosa against Various Antibiotics. Afr J Microbiol Res 2009; 4: 1005-12.
Livermore DM, Woodford N. Carbapenemase A problem in waiting? Curr Opin Microbiol 2000; 3: 489-95. http://dx.doi.org/10.1016/S1369-5274(00)00128-4
Upadhyay S, Sen MR, Bhattacharjee A. Presence of different beta-lactamase classes among clinical isolates of Pseudomonas aeruginosa expressing AmpC beta-lactamase enzyme. J Infect Dev Ctries 2010; 4: 239-42.
Kumar V, Sen MR, Nigam C, Gahlot R, Kumari S. Burden of different beta-lactamase classes among clinical isolates of AmpC-producing Pseudomonas aeruginosa in burn patients: A prospective study Indian J Crit Care Med 2012; 16: 136-40.
Sivanmaliappan TS, Sevanan M. Antimicrobial Susceptibility Patterns of Pseudomonas aeruginosa from Diabetes Patients with Foot Ulcers. Int J Microbiol 2011. http://dx.doi.org/10.1155/2011/605195
Chaudhari V, Gunjal S, Mehta M. Antibiotic resistance patterns of pseudomonas aeruginosa in a tertiary care hospital in central India. Int J Med Sci Public Health 2013; 2: 386-89. http://dx.doi.org/10.5455/ijmsph.2013.2.400-403
Forster DH, Daschner FD. Acinetobacter species as nosocomial pathogens. Eur J Clin Microbial Infect Dis 1998; 17: 73-7.
Gonlugur U, Bakiri MZ, Akkurt I, Efeoglu T. Antibiotic susceptibility patterns among respiratory isolates of Gram negative bacilli in a Turkish University Hospital. BMC Microbiol 2004; 4: 32-6. http://dx.doi.org/10.1186/1471-2180-4-32
Jaykumar S, Appalraju B. The prevalence of multi and pan drug resistant Psuedomonas aeruginosa with respect to ESBL and MBL in a tertiary care hospital. Indian J Pathol Microbiol 2007; 50: 922-25.
Thomson KS, Sauders CC, Moland ES. Use of microdilution panels with and without beta-lactamase inhibitors as phenotypic test for beta-lactamase production among E. coli, Klebseilla spp. Enterobacter spp. Citrobacter freundii and Serratia marcesenes. Antimicrob. Agents Chemother 1999; 43: 1393-400.
Zhang YL, Li JT, Zhao MW. Detection of ampC in Enterobacter cloacae in China. Int J Antimicrob Agents 2001; 18: 365-71. http://dx.doi.org/10.1016/S0924-8579(01)00414-9