Comparative Antimicrobial Activity and Durability of Different Glass Ionomer Restorative Materials with and without Chlorohexidine
DOI:
https://doi.org/10.12970/2311-1755.2013.01.01.2Keywords:
Caries, Streptococcus mutans, lactobacillus acidophilus, Glass ionomers, chlorohexidine diacetate, chlorohexidine digluconate.Abstract
Objectives: To evaluate the in vitro antibacterial effect of three different restorative materials (Glass Ionomer Cements (GIC)) containing chlorohexidine on Streptococcus mutans, and lactobacillus acidophilus.
Materials and Methods: Three commercially available glass ionomer cements, i.e., Fuji 1X (GIC1), Ketac molar (GIC2) and Riva (GIC3) were evaluated each alone and in combination with chlorohexidine diacetate or chlorohexidine digluconate. GICs were manipulated in accordance with manufacturer’s guidelines and embedded in wells made-up in plates of trypticase soy agar seeded with Streptococcus mutans and Lactobacillus MRS agar seeded with Lactobacillus acidophilus. The antibacterial activity was evaluated by using a caliper to measure the diameter of growth inhibition zones. The study was performed in triplicate and Duncan post-Hoc Multiple comparisons at p≤ 0.05 is used for means comparison.
Results: the three Glass ionomers with chlorohexidine diacetate powder (1%) showed the highest activity and prolonged effect on the tested strains compared to glass ionomers free from chlorohexidine and the other glass ionomers with chlorohexidine digluconate liquid. Also, it was found that Fuji IX glass ionomer showed higher and prolonged effect in comparison to Ketac-Molar and Riva glass ionomers. Glass ionomers in combination with chlorohexidine diacetate showed higher efficacy against streptococcus mutans than for lactobacillus acidophilus.
Conclusion: All three GIC’s under evaluation, promoted growth inhibition of the cariogenic bacteria assayed. Fuji IX glass ionomer with chlorohexidine diacetate showed the highest efficacy and durability against the tested strains.
References
Marthaler TM. Changes in dental caries. Caries Res 2004; 38: 173-81. http://dx.doi.org/10.1159/000077752
Frencken JE, Holmgren CJ. Atraumatic restorative treatment (ART) for dental caries. 1st ed. Nijmegen (the Netherlands): STI Books 1999.
Phantumvanit P, Songpaisan Y, Pilot T, Frencken JE. Atraumatic restorative treatment (ART): a three-year community field trial in Thailand -survival of one surface restorations in the permanent dentition. J Public Health Dent 1996; 56: 141-5. http://dx.doi.org/10.1111/j.1752-7325.1996.tb02424.x
AB-Ghani Z, Ngo H, Melntyre J. Effect of remineralization/ demineralization cycles on mineral profiles of Fuji IX fast in vitro using electron probe microanalysis. Aust Dent J 2007; 52: 276-81.
Van Duinen RN, Kleverlaan CJ, de Gee AJ, Werner A and Feilzer AJ. Early and long-term wear of ‘fast-set’ conventional glass-ionomer cements. Dent Mater 2005; 21: 716-20. http://dx.doi.org/10.1016/j.dental.2004.09.007
Imazato S. Antibacterial properties of resin composites and dentin bonding systems. Dent Mater 2003; 19: 449-57. http://dx.doi.org/10.1016/S0109-5641(02)00102-1
Botelho MG. Compressive strength of glass ionomer cements with dental antibacterial agents. SADJ 2004; 59: 51- 3.
Palmer G, Jones FH, Billington RW, Pearson GJ. Chlorhexidine release from an experimental glass ionomer cement. Biomaterials 2004; 25: 5423-31. http://dx.doi.org/10.1016/j.biomaterials.2003.12.051
Takahashi Y, Imazato S, Kaneshiro AV, et al. Antibacterial effects and physical properties of glass-ionomer cements containing chlorhexidine for the ART approach. Dent Mater 2006; 22: 647-52. http://dx.doi.org/10.1016/j.dental.2005.08.003
Botelho MG. Inhibitory effects on selected oral bacteria of antibacterial agents incorporated in a glass ionomer cement. Caries Res 2003; 37: 108-14. http://dx.doi.org/10.1159/000069019
Imazato S, Torii M, Tsuchitani Y, et al. Incorporation of bacterial inhibitor into resin composite. J Dent Res 1994; 73: 1437-43.
Sanders BJ, Gregory RL, Moore K, Avery DR. Antibacterial and physical properties of resin modified glass-ionomers combined with chlorhexidine. J Oral Rehabil 2002; 29: 553-8. http://dx.doi.org/10.1046/j.1365-2842.2002.00876.x
Ribeiro J, Ericson D. In vitro antibacterial effect of chlorhexidine added to glassionomer cements. Scand J Dent Res 1991; 99: 533-40.
Ciancio SG. Agents for the management of plaque and gingivitis. J Dental Res 1992; 71: 1450-54. http://dx.doi.org/10.1177/00220345920710071701
Twetman S, Stahl B, Nederfors T. Use of the strip mutans test in the assessment of caries risk in a group of pre-school children. Int J Pediatr Dent 1994; 4: 245-50. http://dx.doi.org/10.1111/j.1365-263X.1994.tb00142.x
Matthijs S, Adriaens PA. Chlorhexidine varnishes: A review. J Clin Periodontol 2002; 29: 1-8. http://dx.doi.org/10.1034/j.1600-051x.2002.290101.x
Gjermo P, Bonesvoll P, Rolla G. Relationship between plaque-inhibiting effect and retention of chlorhexidine in the human oral cavity. Arch Oral Biol 1974; 19: 1031-34. http://dx.doi.org/10.1016/0003-9969(74)90090-9
Rolla G, Loe H, Schiott CR. The affinity of chlorhexidine for hydroxyapatite and salivary mucins. J Periodontal Res 1970; 5: 90-95. http://dx.doi.org/10.1111/j.1600-0765.1970.tb00698.x
Akdeniz BG, Koparal E, Sen BH, et al. Prevalence of candida albicans in oral cavities and root canals. ASDC J Dent Child 2002; 69: 289-92.
De Carvalho FG, Silva DS, Hebling, et al. Presence of mutans streptococci and candida spp. In dental plaque/dentine of carious teeth and early childhood caries. Arch Oral Biol 2006; 51: 1024-8. http://dx.doi.org/10.1016/j.archoralbio.2006.06.001
Baron EJ, Finegold SM. Baily and Scott's, Diagnostic microbiology, 8th edn, Stephaine Manning (ed). The C.V. Mosby Company, St Louis, Missouri, USA 1990.
Carvalho JC, Ekstrand KR, Thylstrup A. Dental plaque and caries on occlusal surfaces of first permanent molar in relation to stage of eruption. J Dental Res 1989; 68: 773-9. http://dx.doi.org/10.1177/00220345890680050401
Powell LV. Caries prediction: a review of the literature. Commun Dent Oral Epidemiol 1998; 26: 361-71. http://dx.doi.org/10.1111/j.1600-0528.1998.tb01974.x
Jedrychowski J, Caputo A, Kerper S. Antibacterial and mechanical properties of restorative materials combined with chlorhexidines. J Oral Rehabil 1983; 10: 373-81. http://dx.doi.org/10.1111/j.1365-2842.1983.tb00133.x
Takemura K, Sakamoto Y, Staninec M, Kobayashi M, Suehiro K, Tsuchitani Y. Antibacterial activity of a Bis-GMA based composite resin and antibacterial effect of chlorhexidine incorporation. J Conserv Dent 1983; 26: 540-7.
Swanson TD, Tinanoff N. Antiplaque properties of sustained release SnF2: Pilot studies. J Oral Rehabil 1984; 11: 53-63. http://dx.doi.org/10.1111/j.1365-2842.1984.tb00552.x
Ehara A, Torii M, Imazato S, Ebisu S. Antibacterial activities and release kinetics of a newly developed recoverable controlled agent-release system. J Dent Res 2000; 79: 824- 8. http://dx.doi.org/10.1177/00220345000790030701
Sterinberg D, Moldovan M, Molukandov D. Testing a degradable topical varnish of cetylpyridinium chloride in an experimental dental biofilm modle. J Antimicrob Chemother 2001; 48: 241-3. http://dx.doi.org/10.1093/jac/48.2.241
Tam LE, Chan GP, Yim D. In-vitro caries inhibition effects by conventional and resin-modified glass-ionomer restorations. Oper Dent 1997; 22: 4-14.
Berg JH. Glass ionomer cements. Pediatr Dent 2002; 24: 430-38.
Quan DTH, Nga TT, Mc Intyre J. Fluoride release from Fuji IX and other fast-setting GICs. J Dent Res 1995; 74: 440.
Smales RJ, Yip HK. The atraumatic restorative treatment (ART) approach for the management of dental caries. Quintessence Int 2002; 33: 427-32.
Frencken JE, Van’t Hof MA, Van Amerongen WE, Holmgren CJ. Effectiveness of single-surface ART restorations in the permanent dentition: a meta-analysis. J Dent Res 2004; 83: 120-23. http://dx.doi.org/10.1177/154405910408300207
Zickert I, Emilson CG, Krasse B. Effect of caries preventive measures in children highly infected with the bacterium streptococcus mutans. Arch Oral Biol 1982; 27: 862-8. http://dx.doi.org/10.1016/0003-9969(82)90042-5
Lindquist B, Edward S, Torell P, Krasse B. Effect of different carriers preventive measures in children highly infected with mutans streptococci. Scand J Dent Res 1989; 97: 330-7.
Emilson CG. Potential efficacy of chlorhexidine against mutans streptococci and human dental caries. J Caries Res 1994; 73: 682-91.
Van Rijkom HM, Truin GJ, Van’t Hof MA. A meta-analysis of clinical studies on the caries-inhibiting effect of chlorhexidine treatment. J Dent Res 1996; 75: 790-5. http://dx.doi.org/10.1177/00220345960750020901
Tobias RS. Antibacterial properties of dental restorative materials: a review. Int Endod J 1988; 21: 381-92. http://dx.doi.org/10.1111/j.1365-2591.1988.tb00905.x
Costerton JW, Lewandowski Z, De Beer D, Coldawell D, Korber D, James G. Biofilms, the customized microniche. J Bacterial 1994; 176: 2137-42.
Wilson M, Patel H, Fletcher J. Susceptibility of biofilms of streptococcus sanguis to chlorhexidine gluconate and cetylpyridinium chloride. Oral Microbiol Immunol 1996; 11: 188-92. http://dx.doi.org/10.1111/j.1399-302X.1996.tb00356.x
Mehdawi IA, Abou Neel E, Sabeel PV, Palmer G, Salih V, Pratten J, et al. Development of remineralizing, antibacterial dental materials. Acta Biomaterialia 2009; 5: 2525-39. http://dx.doi.org/10.1016/j.actbio.2009.03.030
Turkun SL, Turkun M, Tugrul F, Ates M, Brugger S. Long term antibacterial effects and physical properties of a chlorhexidine containing Glass-Ionomer cement. J Esthete Restor Dent 2008; 20: 29-45. http://dx.doi.org/10.1111/j.1708-8240.2008.00146.x
Coogan MM, Creaven PJ, Antibacterial properties of eight dental cements. Int Endod J 1993; 26: 355-61. http://dx.doi.org/10.1111/j.1365-2591.1993.tb00769.x
DeSchepper EJ, White RR, Von der lehr W. Antibacterial effect of glass ionomers. Am J Dent 1989; 2: 51-6.
Botelho MG. The minimum inhibitory concentration of oral antibacterial agents against cariogenic organisms. Microbios 2000; 103: 31-41.