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Abstract: A computational simulation of laminar natural convection fully-developed multi-phase suspension in a porous 
medium channel is presented. The Darcy model is employed for the porous material which is valid for low velocity, 

viscous-dominated flows. The Drew-Marble fluid-particle suspension model is employed to simulate both particulate (red 
blood cell) and fluid (plasma) phases. The transformed two-point nonlinear boundary value problem is shown to be 
controlled by a number of key dimensionless thermo-physical parameters, namely the Darcy number (Da), momentum 

inverse Stokes number (Skm), particle loading parameter (pL), inverse thermal Stokes number (SkT), particle-phase wall 

slip parameter ( ) and buoyancy parameter (B). Detailed numerical solutions are presented with an optimized Keller Box 

implicit finite difference Method (KBM) for the influence of these parameters on the fluid-phase velocity (U) and particle-
phase velocity (Up). Validation is also included using the Smoothed Particle Hydrodynamic (SPH) Lagrangian method 
and excellent correlation achieved. Increasing Darcy number is observed to significantly accelerate the fluid-phase flow 

and less dramatically enhance particle-phase velocity field. Magnitudes of fluid phase velocity are also elevated with 
both increasing viscosity ratio and particle-phase wall slip parameter. Increasing buoyancy effect depresses particle 
phase velocity. An increase in particle loading parameter is also observed to suppress both fluid and particle phase 

velocities. No tangible change in fluid or particle phase temperatures is computed with increasing Darcy number. The 
study is relevant to dialysis devices exploiting thermal and porous media filtration features. 

Keywords: Biotechnology, blood flow, Prandtl number, two-phase suspension, Stokes number, particle phase 

velocity, Keller box finite difference algorithm, Smoothed particle hydrodynamics (SPH), Thermo-haemotological 
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1. INTRODUCTION  

Multi-phase flows arise frequently in many complex 

and diverse areas of biophysical transport including 

blood flow in coronary arteries [1], capillary flows [2], 

cytoplasm dynamics and cell motion [3], micro-vascular 

flows [4], renal hydromechanics [5] (two-phase flow of 

an inner core of rouleaux surrounded by a cell-depleted 

peripheral layer which manifests with a decrease in 

hydrodynamic resistance to flow). An excellent review 

of microvascular applications has been given by Pries 

et al. [6]. The fluid dynamics of two-phase systems has 

led to significant developments in theoretical models 

which can capture fluid-particle suspension 

characteristics, viscosity variation, heat transfer 

features etc. Many models have been presented 

including percolation physics [7], generalized Taylor 

dispersion models [8], spatially-periodic models for 

porous media [9] and dusty suspension models [10]. 
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The latter have been found to be quite robust in 

simulating simple two-phase flows of blood in porous 

systems. In these simulations blood is assumed to 

behave as a two-component mixture comprised of 

plasma and red blood cells (RBCs). The plasma is 

assumed to behave as a viscous fluid whereas the 

RBCs exhibit a granular-like structure where the 

viscosity also depends on the shear-rate. The dusty 

model has been employed by Bég et al. [11, 12] 

recently to analyze buoyancy-driven blood flow and 

heat diffusion in porous media systems using 

differential transform and homotopy simulation 

techniques. Allied to these investigations a range of 

other models for two-phase blood flows have also been 

developed and these generally aim to mimick the so-

called “plasma-skimming phenomenon” and include 

edge-core, averaging, immersed particle and effective 

medium approaches [13]. To simulate two-phase blood 

flows with any of these models, numerical methods are 

generally required. Biophysics researchers have 

generally adopted approaches developed in chemical 

and petroleum engineering for flows in porous media. 
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Important computational techniques developed include 

finite-element/finite volume mixed algorithms [14], finite 

difference methods [15] and moving finite element 

methods [16]. Dzwinel et al. [17] deployed a discrete-

particle model in 3D to simulate aggregation of red 

blood cells in plasma flows to simulate scales from 

0.001 to 100 μm, achieving significantly finer resolution 

than classical computational fluid dynamics. The 

flexible viscoelastic red blood cells and the walls of the 

elastic vessel are simulated as solid particles held 

together by elastic harmonic forces and the plasma 

modelled as a system of dissipative fluid particles. 

They concluded that aggregation of red blood cells in 

capillary vessels may be accurately analyzed by 

depletion forces and hydrodynamic interactions and 

that the cluster of “sickle” cells formed in the choking 

point of the capillary efficiently decelerates the flow. 

Sankar and Lee [18] studied analytically the pulsatile 

flow of a two-phase model for arterial stenosis 

hemodynamics, elucidating the influence of periodicity, 

stenosis, peripheral layer and non-Newtonian behavior 

of blood. They simulated the blood in the core region 

as a Herschel-Bulkley fluid and the plasma in the 

peripheral layer as a Newtonian fluid, and utilized a 

perturbation method, observing that the plug core 

radius and resistance to flow increase as the stenosis 

size increases while wall shear stress increases with 

the increase of yield stress. Bourantas et al. [19] 

investigated two-phase blood flow behavior and the 

effect of hemodynamic pulsation on the distributions of 

luminal surface of low density lipoproteins (LDL) 

concentration and oxygen flux along the wall of the 

human aorta. They compared the predictions of a two-

phase model with those of the single phase one under 

both steady flow and realistic pulsatile flow conditions 

using a human aorta model constructed from CT 

images, emphasizing the need to address mass 

transfer of low-density lipoproteins (LDLs) which arises 

in the arterial system in the localization of 

atherogenesis. They simulated a tapered aorta in order 

to stabilize the flow of blood, and effectively delayed 

the attenuation of the helical flow, forcing blood to flow 

past the arch and into the first part of the descending 

aorta, showing that the analysis may expound why the 

ascending aorta and the arch are relatively free of 

atherosclerosis. The dependence of viscosity and 

diffusivity on the local density was incorporated in the 

two-phase flow model rendering these quantities 

position-dependent. Furthermore for oxygen transport, 

they compared the numerical results obtained with 

those utilizing the shear thinning non-Newtonian nature 

of blood and also examined the effect of pulsatile flow 

on the transport of LDLs and on the oxygen flux in the 

aorta. Federspiel [20] studied theoretically the effect of 

particulate (two-phase) nature of blood on pulmonary 

oxygen exchange. Red cells were simulated as 

discrete hemoglobin (Hb) containing spheres flowing in 

single file suspension through a cylindrical capillary 

surrounded by a uniform annulus of alveolar tissue. 

The model accurately represented free diffusion of O2 

from alveolar air space through tissue and plasma, free 

and Hb facilitated diffusion of O2 inside red cells, and 

the intracellular kinetics of O2-Hb binding. Oxygen 

uptake was driven by a specified O2 tension at the 

alveolar surface. The computed pulmonary diffusing 

capacity (DLO2) was observed to fall with increasing 

spacing (LS) between red cells. The reduction in DLO2 

with increasing LS was marshalled more by a reduction 

in membrane diffusing capacity (DMO2), than by the 

reduction in erythrocyte diffusing capacity (DeO2). The 

dependence of DMO2 on cell spacing was attributed to 

the manner in which O2 flowed across the alveolar 

surface into the discrete sinks (red cells) within the 

capillaries. Further applications of two-phase blood flow 

in porous media include haemodialysis and filtration 

devices. As the most widely used blood purification 

method, hemodialysis serves as a replacement for 

renal detoxification and discharge functions in the 

event of chronic kidney failure. The patient's blood is 

routed via a vessel access point by means of a blood 

pump through a bloodline system into the dialyser 

(artificial kidney). This is where the blood is effectively 

purified. The blood flows through the 

dialyser'scapillaries, while the dialyser liquid is 

bypassed outside the capillary walls in the direction 

opposing the flow of blood. The capillary walls are 

semi-permeable, i.e. they permit an exchange of 

substances between the blood and dialyser liquid [21]. 

The primary transport mechanism during hemodialysis 

is selective diffusion. The size of the semi-permeable 

capillary walls' pores determines which molecules are 

able to diffuse from the blood into the dialyser liquid 

and vice versa. The capillary walls can be permeated 

by small and medium-sized molecules and water, but 

not by blood cells or large molecules, e.g. proteins. 

This eliminates toxic substances, restores normal 

concentrations of other substances (e.g. electrolytes 

such as potassium, sodium and calcium), balances the 

blood pH value and removes excess water which has 

accumulated in the body. While individual substances 

are eliminated mainly by diffusion, the water is filtered 

by the capillary walls' semi-permeable membrane out 

of the blood and into the dialyser liquid (ultrafiltration). 

This is made possible by the positive pressure on the 
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blood's side and the negative pressure on the dialyser 

liquid's side (trans-membrane pressure, TMP).  

In recent years interest in thermal-dialysis devices 

and thermal filtration devices for purification and 

separation of blood suspensions has grown. In the 

present study we present a viscous-dominated, two-

phase model for blood flow and heat transfer under 

buoyancy forces in a porous media filtration device. 

The Drew-Marble fluid-particle suspension model is 

employed to simulate both particulate (red blood cell) 

and fluid (plasma) phase. The boundary value problem 

is non-dimensionalized and then solved subject to 

relevant boundary conditions with an optimized Keller 

box finite difference technique (KBM) [22]. Validation is 

achieved with a smoothed particle hydrodynamic (SPH) 

code [23]. We investigate the effects of momentum 

Stokes number, Darcy number (biological permeability 

parameter), Grashof number (free convection i.e. 

thermal buoyancy parameter) and particle loading 

parameter, on fluid and particulate phase velocity 

components and also temperatures. Extensive details 

 

a 

 

b 

Figure 1: a: Idealized 2-D model for biofluid-particle flow regime and coordinate system for the blood filtration component of an 
auto-transfusion system for medical treatment. 

b: Complete autotransfusion process for dialysis patients- filtration device component indicated by re-infusion bag (red box). 
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of both computational methods are provided. The 

present study, to the authors’ knowledge, is the first to 

consider coupled fluid-particle suspension flow and 

heat transfer in a Darcian porous medium vertical 

chamber. It is relevant to biotechnology and medical 

engineering haemotological processing systems [24, 

25]. 

2. MATHEMATICAL MODEL  

We investigate the coupled momentum and thermal 

diffusion in fully-developed hemodynamic transport of a 

fluid-particle (two-phase) suspension in a vertical 

parallel-plate channel chamber of a haematological 

filtration device. The chamber contains an isotropic, 

homogenous porous medium, with the plates 

separated by a distance, s. The regime is in local 

thermal equilibrium and is illustrated in Figure 1a. A 

practical device from the medical industry utilized for 

hemodynamic filtration is shown in Figure 1b.  

Many of the newest autotransfusion machines are 

programmable to provide separation of blood into three 

groups; red cells, platelet poor plasma, and platelet rich 

plasma. Blood can be drawn from the patient just prior 

to surgery and then separated. The separated blood 

components which have been sequestered can be 

stored during the surgical procedure. The red cells and 

platelet poor plasma can be given back to the patient 

through intravenous transfusion during or after surgery. 

The platelet rich plasma can be mixed with calcium and 

thrombin to create a product known as autologous 

platelet gel. The particle phase simulates erythrocytes 

or other suspensions, which are assumed rigid. The 

fluid-phase represents plasma. The model is used to 

simulate a porous medium thermo-bio-filtration device 

known as a re-infusion bag or box (see Figure 1a, red 

box component). This procedure aims to minimize 

hemolysis and also extract larger bacterial and 

contaminants from donored blood. It also eliminates 

clots and clusters. The regime studied employs an x-y 

coordinate system. The  x -direction is directed upwards 

along the vertical center-line of the channel with the 
 
y -

direction orientated perpendicular to this. Tortuosity, 

stratification and thermal dispersion effects are ignored. 

The channel is infinitely longer than it is wide (the 

chamber is quite slender, and the flow under this 

approximation may be considered to be one-

dimensional. The number density of the particles is 

constant throughout the flow. The hydrodynamic and 

particle phases are modeled as two interacting 

continua and this interaction is confined to the 

interphase drag force (simulated using a Stokesian 

linear drag force model) and the interphase heat 

transfer. The volume fraction of suspended particles is 

finite and constant. Furthermore the particle-phase 

pressure is vanishingly small and the particles 

(erythrocytes) are effectively dragged along with the 

fluid phase, under natural convection currents 

(buoyancy forces). The concentration of the particles is 

assumed to be somewhat low and the suspension is 

considered dilute in the sense that no particle-particle 

interactions exist. This means that the particle phase is 

considered inviscid. Further details are provided by 

Drew [26]. The drag forces generated by the filtration 

medium fibers in the porous matrix are simulated with a 

linear (Darcy force) and second-order (Forchheimer 

drag) via the Darcy-Forchheimer drag force model, 

following Bég et al. [27-30]. The vectorial equations for 

a two-phase bio-suspension [26, 31] may be shown to 

take the form: 

Fluid Phase (Plasma) 

Conservation of mass: 

  
( V ) = 0            (1) 

Conservation of translation momentum: 

  
V . = P + (μ V )

p
N (V V

p
) + g

μ

K *
V        (2) 

Conservation of energy: 

  
cV . T = (K T )

p
c

p
N

T
(T

p
T )

 
       (3) 

Particle Phase (Erythrocytes) 

Conservation of mass: 

  
(

p
V

p
) = 0            (4) 

Conservation of translation momentum: 

  p
V

p
. V

p
=

p
N (V V

p
) +

p
g          (5) 

Conservation of energy: 

  p
c

p
V . T

p
=

p
c

p
N

T
(T

p
T )          (6) 

We eliminate the longitudinal pressure gradient 

term, from the fluid-phase momentum equation, by re-

defining the transport equations at a reference point 

within the channel. We employ the classical 

Boussinesq approximation and following definitions: 
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u = 0,T = T
0
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,μ = μ

0
,μ

p
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p0
,

T
p
= T

p0
,

p
=

p0
,μ

p
= μ

p0

        (7) 

The governing transport equations may be 

contracted to the following linear ordinary differential 

equation system, which represent fluid phase and 

particle phase momentum and energy transfer 

incorporating porous media drag forces for the infinite 

vertical channel, depicted in Figure 1a: 

  

μ
0

0

d 2u

dy2
+ g *(T T

0
)

p0

0

N (u u
p
)

p0

0

g
μ

0

0
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u = 0    (8) 

K
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dy2 p
c

p
N

T
(T

p
T ) = 0          (9) 

μ
p

d 2u
p

dy2
+

p
N (u u

p
)

p
g = 0         (10) 

  p
c

p
N

T
(T

p
T ) = 0         (11) 

where all parameters have been defined in the 

nomenclature. The first term in eqn. (8) is the viscous 

shear term, the second is the thermal buoyancy, the 

third is the fluid-particle coupling term, the fourth is the 

gravity (density ratio) term. The last term on the left 

hand side of Eq. (8) is the Darcian bulk porous media 

impedance drag. The conservation of mass in both 

phases is also identically satisfied. The boundary 

conditions are defined as follows at the channel walls: 

For the Fluid Phase 

  
u(0) = u(s) = 0,T (0) = T

1
, T (s) = T

2
     (12a) 

For the Particle Phase 

  

up(0) =
du

p
(0)

dy

g

N
,u

p
(s) =

du
p
(s)

dy

g

N
    (12b) 

The fluid velocity boundary conditions (12a) 

correspond to no-slip conditions for the fluid phase at 

the channel walls. Since the particle phase may 

resemble a rarefied gas and undergoes slip at a 

boundary, it is feasible to adopt such a boundary 

condition for hemodynamic inter-particle slip. The 

model developed therefore constitutes a robust, well-

posed, two-point nonlinear boundary value problem for 

viscous-dominated thermofluid transport. The model 

may be normalized by introducing the following non-

dimensional variables:  

y = s , u =
μ

s

U , u
p
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μ

s
U

p
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0
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1
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2
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p
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2
T

0
]

p
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0
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s2
,Pr =

μc

k
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c
p

c
,Sk

T
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μ
,

  

Sk
m
=

Ns2

μ
, P

L
=

p
, B =

gs3

μ2
=
μ

p

kμ
,Gr =
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2s3
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2
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0
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(13) 

The dimensionless conservation equations reduce 

to the final form: 

d 2U

d 2
+Gr Sk

m
P

L
(U U

p
) P

L
B

1

Da
U = 0       (14) 

1

Pr

d 2

d 2
+ Sk

T
P

L
(

p
) = 0        (15) 

  

d 2U
p

d 2
+ Sk

m
(U U

p
) + B = 0        (16) 

  
Sk

T
(

p
) = 0            (17) 

The transformed dimensionless boundary 

conditions are: 

For the Fluid Phase 

  
U (0) =U (1) = 0, (0) = 1, (1) = 1      (18) 

For the Particle Phase 

  

U
p
(0) =

dU
p
(0)

d

B

sk
m

        (19) 

  

U
p
(1) =

dU
p
(1)

d

B

sk
m

        (20) 

The parameter, , i.e. the dimensionless particle-

phase wall slip parameter, simulates the effects of wall 

slip on the flow and heat transfer in the regime. The 

parameters N and NT which feature in the inverse 

momentum Stokes number (Skm) and inverse 

temperature Stokes number (SkT), respectively, are 

measures of relaxation times. The non-dimensional 

boundary value problem (BVP) defined by eqns. (14)-

(17) with boundary conditions (18-20) is solved using 

two numerical methods- the Keller box implicit finite 

difference second order accurate method (KBM) and 

the smoothed particle hydrodynamic (SPH) technique. 

Extensive visualization of the response of the multi-

phase velocity and temperature distributions to 

variation in the key biophysical parameters arising in 

the model is presented.  
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3. NUMERICAL SOLUTION WITH KELLER BOX 
METHOD (KBM) 

As described in Cebeci and Bradshaw [32, 33], 

Vasu et al. [34], Keller [35] and Bég [36] and Prasad et 

al. [37-39], the differential equations (13) to (16) subject 

to the boundary conditions (17a and b) are first written 

as a system of first-order equations. For this purpose, 

we introduce new dependent variables: 

  

u(=U ), g(= ), s(=U
p
), z(=

p
) and

v(=U '), p(= '), t(=U
p

' ), m(=
p

' )
      (21) 

These signify the variables for velocities and 

temperature respectively. Therefore, we obtain the 

following eight first-order equations: 

  u ' = v           (22) 

g ' = p           (23) 

  s ' = t           (24) 

  z ' = m           (25) 

  
v '+ Gr g Sk

m
P

L
(u s) P

L
B

1

Da
u = 0       (26) 

p '

Pr
+ Sk

T
P
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(z g) = 0         (27) 

  
t '+ Sk

m
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Sk

T
m ' Sk

T
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Where primes denote differentiation with respect to 

. In terms of the dependent variables, the boundary 

conditions become: 

= 0 : u = 0, g = 1, z = 1, s = t(0)
B

Sk
m

= 1: u = 0, g = 1, z = 1, s = t(1)
B

Sk
m

     (29) 

We now write the difference equations that are to 

approximate equations (22-28) by considering one 

“Keller box” mesh rectangle as in Figure 2.  

We start by writing the finite-difference 

approximations of the ordinary differential equations 

using centered-difference derivatives. This leads to:  

(u
j

u u
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h
j

=
1

2
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Equations (30)-(37) are imposed for j= 1, 2… J at 

given n. At
  

=
n , the boundary conditions (29) 

become: 

 

Figure 2: “Keller-Box” cell for finite difference approximation. 
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Newton’s Method 

If we assume 
  
u
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0 j J , then equations (30) to (37) are 

a system of equations for the solution of the unknowns
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Then the system of equations (30) to (37) can be 

written as (after multiplying with
  
h
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3
]

j 1/2

n 1

 
and  involve only know 

  
[R

4
]

j 1/2

n 1  quantities if we assume that solution is known 

on
   

=
n 1 . To solve equation (39) to (46) with (40) by 

Newton’s method, we introduce the iterates
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j
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j

( i) , p
j

( i) ,s
j

( i) ,t
j

( i) , z
j

( i) ,m
j

( i)
, i = 0, 1, 2… 

To linearize the nonlinear system of equations (39) 

to (46) using Newton’s method, we introduce the 

following iterates 

  

u
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      (51) 

Then we substitute these expressions into 

equations (39) to (43) and this yields 
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Next we drop the terms that are quadratic in
 

  
u

j

( i) , v
j
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j

( i) , p
j

( i) , s
j

( i) , t
j

( i) , z
j

( i) , m
j

( i)( ) . 

We have also dropped the superscript i for 

simplicity. After some algebraic manipulations, the 

following linear tri-diagonal system of equations is 

obtained: 
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To complete the system (63)-(67), we recall the 
boundary conditions (38), which can be satisfied 
exactly with no iteration [33]. Therefore to maintain 
these correct values in all the iterates, we take: 

u
0
= 0, s

0

n
= 0, g

0
= 0, z

0
= 0,

u
J
= 0, s

J
= 0, g

J
= 0, z

J
= 0

       (73) 

Block-Elimination method 

To linear system (60)-(67) can now be solved by the 

block-elimination method as outlined in Bég [36] and 



88     Journal of Advanced Biotechnology and Bioengineering, 2013, Vol. 1, No. 2 Beg et al. 

Vasu et al. [34]. The linearized difference equations of 

the system (56)-(63) have a block-tri-diagonal 

structure. Commonly, the block tri-diagonal structure 

consists of variables or constants; however in the 

Keller box method, it consists of block matrices. Before 

we can proceed further with the block-elimination 

method, we demonstrate how to derive the elements of 

the block matrices from the linear system (60)-(64). We 

consider three cases, namely when j = 1, J-1 and J. 

When j = 1, the linear systems (22-25) become: 
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The corresponding matrix form is  

(We 
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1
=
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1
, and u

0
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0

n
= 0, g

0
= 0, z
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= 0  let  
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For j = 1, we have
   

[A
1
][

1
]+ [C

1
][

2
] = [r

1
] . Similar 

procedures are followed at the different stations. 
Effectively the seven linearized finite difference 
equations have the the matrix-vector form: 

j = j          (76) 

Where  = Keller coefficient matrix of order 8 x 8, j 

= eighth order vector for errors (perturbation) quantities 

and j= seventh order vector for Keller residuals. This 

system is then recast as an expanded matrix-vector 

system, viz: 

j j - j j = j         (77) 

where now j = coefficient matrix of order 8 x 8, j = 

coefficient matrix of order 8 x 8 and j= seventh order 

vector of errors (iterates) at previous station on grid. 

Finally the complete linearized system is formulated as 

a block matrix system where each element in the 

coefficient matrix is a matrix itself. Accurate results are 

produced by performing a mesh sensitivity analysis. 

max has been set at 1 and this defines an adequately 

large value at which the prescribed boundary 

conditions are satisfied. It is worth mentioning that 

throughout the computations, this convergence 

criterion is used as it is efficient, suitable and the best 

yet for all the problems considered. Calculations are 

stopped when 

  
v

0

i
<

1
         (78) 

Where 
 1

 is a small prescribed value, in this study
 

 1
= 0.0001 or 10

5 , that gives about four decimal places 

accuracy for most predicated quantities as suggested 

in Cebeci and Bradshaw [32] and also by Bég et al. 

[40, 41]. 

4. VALIDATION WITH SMOOTHED PARTICLE 
HYDRODYNAMICS (SPH) 

To verify the accuracy of the KBM algorithm 

described above, we also employ a robust SPH 
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algorithm to solve the same boundary value problem 

defined by eqns. (14-20). SPH is a mesh-less particle-

based Lagrangian fluid dynamics simulation technique, 

in which the fluid flow is represented by a collection of 

discrete elements or pseudo-particles. It was 

introduced originally for astrophysical fluid dynamics 

simulations in the late 1970s [42]. It was then further 

developed for shock gas dynamics and free surface 

hydrodynamics problems in the 1980s and 1990s by 

Monaghan and co-workers [43-46]. It has also been 

applied to viscous-dominated (low Reynolds) number 

flows [47], ocean hydrodynamics [48], manufacturing 

fluid mechanics [49], transient pipe flows [50], porous 

media diffusion [51] and thermal conduction heat 

transfer [52]. Very recently SPH has been applied to 

simulate splashdown problems for spacecraft landing 

modules [53], magnetohydrodynamic porous media 

thermal convection flows for electro-conductive 

polymer processing [54] and wavy surface solar 

collector heat transfer [55]. A good review of modern 

applications is given in [56]. In comparison to the 

Eulerian-based conventional numerical methods, SPH 

has several distinct advantages, which make it 

particularly adaptable to nonlinear heat transfer, porous 

media flows and other branches of viscous fluid 

dynamics. Within the SPH formulation, the 

computational domain is discretized by a finite set of 

interpolating points (particles) with invariant 

coordinates in the material frame. The SPH particles 

represent a finite mass of the discretized continuum 

and carry the information about all physical variables 

which are evaluated at their positions. Although many 

modifications of SPH have been made in recent years, 

the foundation for using this technique in a generalized 

three-dimensional fluid domain, is the three-

dimensional Dirac delta function, 
  

3( x
ij

)  [56] which 

satisfies the following identity: 

  
f ( x

i
) = f ( x

i
) 3( x

ij
)d        (79) 

The appropriate two-dimensional form is used in the 

present study, where { f ( x
i

)}  is the kernel 

approximation of the scalar field 
 
f ( x

i
)  at particle i. In 

SPH the function values and their derivatives at a 
specific particle are interpolated from the function 
values at surrounding particles using the interpolating 
(smoothing) function and its derivatives, respectively: 

 

f
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m
j

j

f
j

j

W( r
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r
j
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i
f
i
=

m
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j

f
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j

W( r
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r
j

,h        (81) 

where m is the mass,  is the density and W is the 

interpolating (smoothing) function with a continuous 

derivative iW. The index i, j respectively, denotes the 

variables at the particle i, j respectively, and i denotes 

a derivative according to ri which is the position vector. 

The smoothing function W is defined so that its value 

monotonically decreases as the distance between 

particles increases. It has a compact support domain, 

for which the radius is defined by the smoothing length 

h. The smoothing function is normalised and in the limit 

case, when the smoothing length goes to zero, the 

smoothing function becomes the Dirac delta function, 

defined for the general 3-D fluid domain in eqn. (79). 

Within this study, we have implemented the well-tested 

and robust cubic B-spline smoothing function. Other 

important aspects of SPH are the imposition of an 

artificial viscosity and artificial stress. The former is 

applied in order to smooth the unphysical numerical 

oscillations, which can arise even in steady-state 

convection heat transfer. Artificial viscosity is defined 

as a combination of terms analogous to bulk and von 

Neumann-Richtmyer viscous pressures which are 

traditionally used in finite difference methods. The 

artificial viscosity contains terms with constant artificial 

viscosity parameters, shear and the bulk viscosity and 

also a special term to mitigate particle “inter-

penetration”. The artificial stress term acts as a 

repulsive force between particles which is elevated 

when the separation between particles decreases. This 

is achieved via a suitable scaling function, defined as a 

ratio of the smoothing function values for the actual 

distance between the pair of particles and the initial 

particle spacing. In the current model, numerical tests 

were conducted to establish computational spatial 

dependence on the number of SPH particles used. 

Typically computations do not exceed tens of seconds 

on an Octane SG Desk workstation. The tolerance 

level was also set, as in the KBM simulations, at  = 

10
-7

. Tables 1-6 depict the comparisons of solutions 

obtained by both KBM and SPH for skin friction and 

wall heat transfer gradient distributions. The correlation 

is excellent. Confidence in the KBM simulations is 

therefore justifiably very high. The negative velocity 

values in the tables indicate flow reversal i.e. backflow 

of both the fluid phase and the particles which are 

caused in these cases to flow in the downward 

direction through the channel. Positive values are also 

computed in particular for the fluid phase (plasma) 

velocity (Table 2) at greater transverse coordinate
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Table 1: Comparison of Keller Box (KBM) and SPH solutions for fluid-phase velocity U( ) and particle-phase velocity 

Up( ) values for various Grashof and Darcy number values with transverse coordinate  and Pr = 25, Skm = 

SkT = 0.5, B =  = 0.1, PL =  =  = 1.0 

Transverse Coordinate  

0.25 0.25 0.5 0.5 
Gr Da 

U( ) 

KBM 

Up( ) 

KBM 

U( ) 

SPH 

Up( ) 

SPH 

U( ) 

KBM 

Up( ) 

KBM 

U( ) 

SPH 

Up( ) 

SPH 

0.1 -0.25250 -0.10909 -0.25251 -0.10910 -0.00973 -0.12650 -0.00974 -0.12651 

0.5 -0.30551 -0.10952 -0.30550 -0.10953 -0.01637 -0.12668 -0.01638 -0.12669 

1.0 -0.31394 -0.10960 -0.31393 -0.10961 -0.01786 -0.12672 -0.01787 -0.12673 

10.0 -0.32201 -0.10967 -0.32202 -0.10967 -0.01945 -0.12676 -0.01946 -0.12677 

20 

100.0 -0.32285 -0.10968 -0.32286 -0.10969 -0.01962 -0.12677 -0.01963 -0.12676 

0.1 -1.23296 -0.11575 -1.23295 -0.11576 -0.00974 -0.12696 -0.00975 -0.12695 

0.5 -1.47915 -0.11745 -1.47914 -0.11746 -0.01639 -0.12722 -0.01640 -0.12723 

1.0 -1.51705 -0.11771 -1.51703 -0.11772 -0.01788 -0.12727 -0.01789 -0.12726 

10.0 -1.55290 -0.11797 -1.55291 -0.11798 -0.01947 -0.12732 -0.01948 -0.12731 

100 

100.0 -1.55659 -0.11799 -1.55658 -0.11798 -0.01965 -0.12733 -0.01964 -0.12732 

 

Table 2: Comparison of Keller Box (KBM) and SPH solutions for fluid-phase velocity U( ) and particle-phase velocity 

Up( ) values for various Grashof and Darcy number values with transverse coordinate  and Pr = 25, Skm = 

SkT = 0.5, B =  = 0.1, PL =  =  = 1.0 

Transverse Coordinate  

0.75 0.75 1.0 1.0 
Gr Da 

U( ) 

KBM 

Up( ) 

KBM 

U( ) 

SPH 

Up( ) 

SPH 

U( ) 

KBM 

Up( ) 

KBM 

U( ) 

SPH 

Up( ) 

SPH 

0.1 0.23711 -0.15576 0.23710 -0.15575 0.00000 -0.20000 0.00000 -0.20000 

0.5 0.28056 -0.15558 0.28055 -0.15559 0.00000 -0.20000 0.00000 -0.20000 

1.0 0.28686 -0.15556 0.28685 -0.15557 0.00000 -0.20000 0.00000 -0.20000 

10.0 0.29266 -0.15555 0.29265 -0.15556 0.00000 -0.20000 0.00000 -0.20000 

20 

100.0 0.29325 -0.15554 0.29324 -0.15555 0.00000 -0.20000 0.00000 -0.20000 

0.1 1.21755 -0.14967 1.21754 -0.14968 0.00000 -0.20000 0.00000 -0.20000 

0.5 1.45417 -0.14832 1.45418 -0.14833 0.00000 -0.20000 0.00000 -0.20000 

1.0 1.48993 -0.14813 1.48992 -0.14814 0.00000 -0.20000 0.00000 -0.20000 

10.0 1.52351 -0.14794 1.52350 -0.14795 0.00000 -0.20000 0.00000 -0.20000 

100 

100.0 1.55301 -0.14632 1.55302 -0.14633 1.52695 -0.14793 0.00000 -0.20000 

 

(  = 0.75). Positive values are also particularly evident 

for fluid phase velocity at lower particle loading 

parameter values (B = 0.1, 1) at all values of 

momentum Stokes number (Tables 3 and 4) and 

negativity is only observed for very high B value (= 10). 

The clinical implication of this is that the gravity effect 

(B) is a critical parameter dictating the direction of the 

bulk plasma flow in actual auto-transfusion filtration 

devices. Density of suspensions, therefore, plays a 

significant role in determining the performance of these 

medical devices in for example dialysis, as does the 

plasma viscosity, both characteristics appearing in the 

mathematical definition of the parameter, B. 
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Table 3: Comparison of Keller Box (KBM) and SPH solutions for fluid-phase velocity U( ) and particle-phase velocity 

Up( ) values for various momentum Stokes (Skm) and gravity (B) numbers with transverse coordinate  and 

Pr = 25, Gr = 20, Da = 0.1, SkT = 0.5, B =  = 0.1, PL =  =  = 1.0 

Transverse Coordinate  

0.25 0.25 0.5 0.5 
B Skm 

U( ) 

KBM 

Up( ) 

KBM 

U( ) 

SPH 

Up( ) 

SPH 

U( ) 

KBM 

Up( ) 

KBM 

U( ) 

SPH 

Up( ) 

SPH 

0.1 -0.25621 -0.90684 -0.25620 -0.90683 -0.01161 -0.92532 -0.01160 -0.92534 

1.0 -0.24807 -0.01168 -0.24806 -0.01167 -0.00754 -0.02774 -0.00753 -0.02773 0.1 

10.0 -0.18991 0.05369 -0.18990 0.05368 0.01748 0.05736 0.01749 0.05734 

0.1 -0.34054 -9.74015 -0.34053 -9.74016 -0.11885 -9.70321 -0.11886 -9.70320 

1.0 -0.32263 -0.76137 -0.32262 -0.76138 -0.10123 -0.72858 -0.10124 -0.72859 1 

10.0 -0.22247 0.04165 -0.22246 0.04166 -0.01903 0.06611 -0.01904 0.06612 

0.1 -1.18385 -98.0732 -1.18384 -98.0733 -1.19125 -97.4820 -1.19126 -97.4821 

1.0 -1.06825 -8.25824 -1.06827 -8.25825 -1.03814 -7.73691 -1.03815 -7.73692 10 

10.0 -0.54800 -0.07874 -0.54801 -0.07875 -0.38410 0.15366 -0.38411 0.15367 

 

Table 4: Comparison of Keller Box (KBM) and SPH solutions for fluid-phase velocity U( ) and particle-phase velocity 

Up( ) values for various momentum Stokes (Skm) and gravity (B) numbers with transverse coordinate  and 

Pr = 25, Gr = 20, Da = 0.1, SkT = 0.5, B =  = 0.1, PL =  =  = 1.0 

Transverse Coordinate  

0.75 0.75 1.0 1.0 
B Skm 

U( ) 

KBM 

Up( ) 

KBM 

U( ) 

SPH 

Up( ) 

SPH 

U( ) 

KBM 

Up( ) 

KBM 

U( ) 

SPH 

Up( ) 

SPH 

0.1 0.23794 -0.95616 0.23795 -0.95617 0.00000 -1.00000 0.00000 -1.00000 

1.0 0.23603 -0.05516 0.23604 -0.05517 0.00000 -0.10000 0.00000 -0.10000 0.1 

10.0 0.21697 0.04906 0.21698 0.04907 0.00000 -0.01000 0.00000 -0.01000 

0.1 0.15361 -9.78947 0.15362 -9.78948 0.00000 -10.0000 0.00000 -10.0000 

1.0 0.16146 -0.80487 0.16147 -0.80488 0.00000 -1.00000 0.00000 -1.00000 1 

10.0 0.18441 0.03697 0.18442 0.03698 0.00000 -0.10000 0.00000 -0.10000 

0.1 -0.68970 -98.1225 -0.68971 -98.1226 0.00000 -100.000 0.00000 -100.000 

1.0 -0.58417 -8.30195 -0.58418 -8.30196 0.00000 -10.0000 0.00000 -10.0000 10 

10.0 -0.14121 -0.08390 -0.14122 -0.08391 0.00000 -1.00000 0.00000 -1.00000 

 

Table 5: Comparison of Keller Box (KBM) and SPH solutions fluid-phase velocity U( ) and particle-phase velocity 

Up( ) values for various particle loading (PL) and viscosity ratio ( )  parameters with transverse coordinate  

and Pr = 25, Gr = 20, Da = 0.1, SkT= Skm= 0.5, B =  = 0.1,  = 1.0 

Transverse Coordinate  

0.25 0.25 0.5 0.5 
PL  

U( ) 

KBM 

Up( ) 

KBM 

U( ) 

SPH 

Up( ) 

SPH 

U( ) 

KBM 

Up( ) 

KBM 

U( ) 

SPH 

Up( ) 

SPH 

0.1 -0.24791 -0.01530 -0.24792 -0.01531 -0.00063 0.01372 -0.00064 0.01371 

1.0 -0.24815 -0.10895 -0.24816 -0.10896 -0.00100 -0.12628 -0.00101 -0.12629 0.1 

5.0 -0.24819 -0.12165 -0.24820 -0.12166 -0.00104 -0.14506 -0.00105 -0.14507 

0.1 -0.25010 -0.01589 -0.25011 -0.01588 -0.00620 0.01272 -0.00622 0.01273 

1.0 -0.25250 -0.10909 -0.25251 -0.10908 -0.00973 -0.12650 -0.00974 -0.12651 1 

5.0 -0.25283 -0.12169 -0.25284 -0.12167 -0.01020 -0.14511 -0.01021 -0.14512 

0.1 -0.26654 -0.02067 -0.26655 -0.02069 -0.05169 0.00445 -0.05168 0.00446 

1.0 -0.28533 -0.11022 -0.28534 -0.11023 -0.07924 -0.12828 -0.07925 -0.12829 10 

5.0 -0.28776 -0.12193 -0.28777 -0.12194 -0.08278 -0.14549 -0.08279 -0.14548 
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Table 6: Comparison of Keller Box (KBM) and SPH solutions fluid-phase velocity U( ) and particle-phase velocity 

Up( ) values for various particle loading (PL) and viscosity ratio ( )  parameters with transverse coordinate  

and Pr = 25, Gr = 20, Da = 0.1, SkT= Skm= 0.5, B =  = 0.1,  = 1.0 

Transverse Coordinate  

0.75 0.75 1.0 1.0 
PL  

U( ) 

KBM 

Up( ) 

KBM 

U( ) 

SPH 

Up( ) 

SPH 

U( ) 

KBM 

Up( ) 

KBM 

U( ) 

SPH 

Up( ) 

SPH 

0.1 0.24686 -0.03504 0.24687 -0.03505 0.00000 -0.20000 0.00000 -0.20000 

1.0 0.24658 -0.15558 0.24659 -0.15559 0.00000 -0.20000 0.00000 -0.20000 0.1 

5.0 0.24654 -0.17097 0.24655 -0.17098 0.00000 -0.20000 0.00000 -0.20000 

0.1 0.23979 -0.03591 0.23978 -0.03592 0.00000 -0.20000 0.00000 -0.20000 

1.0 0.23711 -0.15576 0.23712 -0.15578 0.00000 -0.20000 0.00000 -0.20000 1 

5.0 0.23676 -0.17101 0.23677 -0.17102 0.00000 -0.20000 0.00000 -0.20000 

0.1 0.17878 -0.04327 0.17879 -0.04329 0.00000 -0.20000 0.00000 -0.20000 

1.0 0.15773 -0.15719 0.15774 -0.15718 0.00000 -0.20000 0.00000 -0.20000 10 

5.0 0.15507 -0.17132 0.15508 -0.17131 0.00000 -0.20000 0.00000 -0.20000 

 
5. RESULTS AND INTERPRETATION 

Extensive computations using KBM are shown in 

Figures 3-12.  

Figures 3, 4 illustrate the influence of Darcy 
number, Da, on particle velocity and fluid and particle 
(erythrocyte) temperatures. In medical filter devices, 
large permeability regimes are used to ensure 
accelerated flux of the biofluids. Artificial kidneys also 
exhibit extremely large permeabilities and therefore in 

the simulations Da  0.1. There is a requirement for 

high permeability porous media in dialysis systems and 
bio-hemo-filters since a sparse packing of the porous 
matrix avoids stagnation zones in the flow and also 
mitigates flow reversal phenomena while sustaining a 
filtration of the blood fluid-particle suspension. 
Inspection of the transformed fluid phase momentum 

equation demonstrates that the Darcian drag,
 

1

Da
U

 

is inversely proportional to Darcy number, the latter 
being directly proportional to the hydraulic conductivity 
i.e. permeability,

 
of the porous medium. Darcian drag 

force is therefore inversely proportional to permeability. 
With increasing  Da

 
the porous medium permeability in 

the channel is progressively elevated. In the limit as
 

Da , the porous media fibres disappear and the 
regime becomes a purely fluid-particle suspension in 
the vertical channel. As  Da

 
is increased particle phase 

velocities (Figure 3) which remain always negative 
across the entire channel span (i.e. reversal of 
erythrocyte motions is strong, with a net downward flow 
in the channel), are consistently increased with 
increasing Darcy number. Particle phase velocity 
distributions exhibit a monotonic decay from the left 
channel wall to the right. The permeability parameter, 

 

Figure 3: Particle phase velocity distributions for various Darcy numbers.  
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Figure 4: Fluid and particle phase temperature distributions for various Darcy numbers.  
 

 

Figure 5: Fluid phase velocity distributions for various momentum Stokes numbers.  

 

 

Figure 6: Particle phase velocity distributions for various momentum Stokes numbers. 



94     Journal of Advanced Biotechnology and Bioengineering, 2013, Vol. 1, No. 2 Beg et al. 

 

Figure 7: Fluid phase velocity distributions for various particle-phase wall slip and viscosity ratio parameters. 

 

 

Figure 8: Particle phase velocity distributions for various particle-phase wall slip and viscosity ratio parameters. 

 

 

Figure 9: Fluid phase velocity distributions for various gravity parameters. 
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Figure 10: Particle phase velocity distributions for various gravity numbers. 

 

 

Figure 11: Fluid phase velocity distributions for various particle loading numbers. 

 

 

Figure 12: Particle phase velocity distributions for various particle loading numbers. 
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Da, has an important implication in real clinical 
systems. As the most widely used blood purification 
method, hemodialysis serves as a replacement for 
renal detoxification and discharge functions in the 
event of chronic kidney failure. The patient's blood is 
routed via a vessel access point by means of a blood 
pump through a bloodline system into the dialyser 
(artificial kidney) or in the auto-tranfusion system in the 
hybrid filter device. This is where the blood is cleaned. 
The blood flows through the dialyser's capillaries, while 
the dialyser liquid is bypassed outside the capillary 
walls in the direction opposing the flow of blood. The 
primary transport mechanism during hemodialysis is 
selective diffusion. However thermal buoyancy has 
been explored as an important control mechanism. The 
presence of the porous medium allows permeation by 
small and medium-sized molecules and water, but not 
by large molecules, e.g. proteins. This eliminates toxic 
substances, restores normal concentrations of other 
substances (e.g. electrolytes such as potassium, 
sodium and calcium), balances the blood pH value and 
removes excess water which has accumulated in the 
body. While individual substances are eliminated 
mainly by diffusion, the water is filtered by the porous 
medium fibers and into the dialyser liquid (ultra-
filtration). Alternatives for this include semi-permeable 
walls, however a combination may prove even more 
effective. Figure 4 shows that Darcy number has no 
tangible influence on temperatures of the plasma or the 
blood cells. This is as expected since the Darcy 
number is a hydrodynamic effect not a thermal one. 

Figures 5 and 6 depict the influence of the inverse 

momentum Stokes number (Skm) on the fluid phase 

velocity distribution. The parameter, Skm, signifies the 

coupling between the fluid and the particle phases via 

the interphase momentum transfer coefficient (N), the 

latter being a quantification of relaxation time. 

Increasing Skm 
will serve to enhance the transfer of 

momentum from the fluid phase to the particle phase 

and will effectively decelerate the fluid phase (plasma) 

velocities-U will therefore be increased i.e. values will 

become less negative, as observed in Figure 5. 

Backflow is therefore also depressed with increasing 

Skm 
values. Once again we note the oscillatory pattern 

of fluid phase velocities in which backflow is maximized 

in the left channel half space and strongly eliminated in 

the right channel half space. The parameters N and NT 

which feature in the inverse momentum Stokes number 

(Skm) and inverse temperature Stokes number (SkT), 

respectively, are measures of relaxation times. Particle 

phase velocity is also considerably enhanced with an 

increase in the inverse momentum Stokes number. 

This parameter features not only in the fluid phase 

momentum equation via the term (Skm)pL(U-Up), but 

additionally arises in the particle phase momentum 

equation in the term, (Skm)(U-Up); as such, Skm will 

exert a significant effect on particle phase dynamics. 

 
Figures 7 and 8 show the effect of dimensionless 

particle-phase wall slip parameter ( ), and viscosity 

ratio ( ) is featured only in the boundary conditions 

(19), (20). As described earlier, the parameter, , i.e. 

the dimensionless particle-phase wall slip parameter, 

simulates the effects of wall slip on the flow and heat 

transfer in the regime. Increasing  values will mobilize 

an enhanced degree of slip between the particles and 

the biofluid plasma. As such this parameter is 

physically important in hameotological processing 

devices. It is clear that with an increasing of  values 

of U( ) and Up( ) are both increased i.e. values are 

progressively made less negative. The undulating fluid 

phase velocity distribution is evident in Figure 7, where 

once again positive flow is only achieved in mainly the 

channel right half-space; everywhere else there is 

significant backflow. Maximum particle phase velocities 

(Figure 8) are computed approximately at the channel 

vertical centerline and magnitudes are significantly 

greater than for the fluid phase. In both Figures 7 and 8 

as viscosity ratio is decreased, both plasma (fluid) and 

erythrocyte (particle) phase velocities are enhanced i.e. 

become less negative. Viscosity ratio only features in 

the particle momentum conservation equation (16). The 

profiles for  =0.1 are therefore always above those for 

 =1.0.  

Figures 9 and 10 depict the response of both fluid 

and particle phase velocities to a change in the gravity 

parameter, B. This parameter is inversely proportional 

to dynamic fluid viscosity and directly proportional to 

the fluid density. It is distinct from the thermal buoyancy 

parameter, Gr. Although both these “gravitational” 

parameters feature in the fluid phase momentum 

equation (8), the gravity parameter, B also arises in the 

particle phase momentum equation (10), the latter as 

+B. In the plasma (fluid) momentum eqn. (14), B arises 

in the negative body force term, -PLB where it is 

coupled with the particle loading parameter, PL = p/ . 

The body force – PLB, acts in a similar fashion to the 

Darcian porous medium drag force. It will consequently 

exert a major inhibiting effect on both plasma (fluid 

phase) and particle phase velocity distributions 

(erythrocytes). This is indeed testified to by the profiles 

in Figures 9 and 10 where in both cases a strong 

retardation in velocity phases is induced with 

increasing B values. Simultaneously there is a dramatic 

alteration in both sets of profiles. The fluid phase 

profiles are consistently oscillatory patterns for all B 

values whereas the particle velocity distributions evolve 
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from linear profiles to weakly parabolic ones for 

maximum B. The linear particle phase profiles are 

transformed to an inverted parabola also symmetrical 

about the channel centerline as B values increase. In 

both cases we have studied the strong free convection 

case i.e. Gr =20, as this is the scenario of greatest 

interest in bio-thermally-driven hameo-filtration dialysis 

devices.  

Figures 11, 12 illustrate the evolution of fluid and 

particle phase velocities across the channel with a 

variation in the particle loading parameter, PL = p/  
. 

This parameter signifies the ratio of the densities of the 

particle and fluid phases. With a rise in PL, particle 

phase density is elevated and this will act to depress 

the fluid phase velocity magnitudes, as observed in 

Figure 11. In this figure clearly the maximum fluid 

phase velocity corresponds to the weakest particle 

loading parameter (pL = 0.05 for which the particle 

phase density is 5% of the fluid phase density), and the 

minimum (most negative) fluid phase velocity arises for 

the strongest particle loading parameter case (pL = 

100) for which the fluid phase density is 100% of the 

particle phase density i.e. the densities are equal). Very 

dense biofluid suspensions therefore even under 

strong buoyancy forces (Gr = 20) lead to a significant 

deceleration in the upward flow in the porous media 

biofiltration medium. This is an important limiting factor 

in the design and specification of physiological fluids for 

such devices. Similarly the fluid phase response, the 

particle phase velocities are also significantly 

depressed with a rise in particle loading parameter, 

owing to the escalation in density of particles which 

inhibits the motions of the particles in an upward 

buoyant flow. Backflow of particles is therefore 

considerably accentuated with an increase in values of 

PL. 

6. CONCLUSIONS 

Keller box finite difference numerical solutions have 

been presented for the nonlinear, coupled fluid-particle 

suspension flow and heat transfer in a biofiltration 

porous media device. The physically realistic case 

corresponding to a Prandtl number of 25 has been 

studied which represents accurately laminar heat-

conducting blood flow. The present computations have 

shown that flow is accelerated with increasing Darcy 

number, corresponding to progressively more 

permeable regimes. Increasing particle loading 

parameter decelerates both fluid and particle phase 

velocities inducing considerable flow reversal and 

particle motion back-tracking. Increasing gravity 

parameter decelerates both fluid and particle phase 

velocities. Increasing particle-phase wall slip parameter 

manifests with a strong accentuation in both plasma 

(fluid) and erythrocyte (particle) velocities. However 

with increasing viscosity ratio both fluid and particle 

velocities are significantly depressed. The present 

model has ignored micro-structural rheological effects 

in blood. These will be simulated using a micropolar 

hydrodynamic model and the results of these 

investigations will be communicated imminently. 

Furthermore the versatility and exceptional accuracy of 

both Keller box difference and smoothed particle 

hydrodynamic algorithms in multi-phase 

hemodynamics has also been clearly demonstrated 

and it is envisaged that other researchers will apply 

these methods to biophysical fluid modelling problems. 

NOMENCLATURE 

Dimensional Parameters 

 = density of fluid phase 

 t  = time 

 = gradient operator vector 

 V  = fluid phase velocity vector 

 P  = hydrodynamic pressure 

μ  = dynamic viscosity of biofluid phase (plasma) 

 p  = density of particle phase (erythrocytes) 

 N  = interphase momentum transfer coefficient 

 
Vp  = particle phase velocity vector 

g  = gravitational acceleration 

  K
*

 = permeability of porous medium 

 c  = specific heat of fluid phase at constant 
pressure (isobaric) 

 T  = temperature of fluid phase 

 K  = thermal conductivity of fluid phase 

 
c

p
 = specific heat of particle phase at constant 

pressure (isobaric) 

 
N

T  = interphase heat transfer coefficient 
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T

p
 = temperature of particle phase 

 
μ

p
 = dynamic viscosity of particle phase 

x  = direction parallel to channel 

 
y  = direction transverse to channel 

 u  = velocity of fluid phase 

 
up  = velocity of particle phase 

 

*  = coefficient of volumetric expansion 

s  = separation of plates comprising channel 

 = particle phase wall-slip coefficient 

Non-Dimensional Parameters 

 = transformed y coordinate 

 U  = dimensionless -direction fluid phase velocity 

 
U p  = dimensionless -direction particle phase 

velocity 

 = dimensionless temperature of fluid phase 

 p  = dimensionless temperature of particle phase 

 Da  = Darcy number 

 Pr  = fluid phase Prandtl number 

 = specific heat ratio 

 
Sk

T
 = inverse temperature Stokes number 

 
Sk

m
 = inverse hydrodynamic (momentum) Stokes 

number 

 
P

L
 = particle loading parameter 

 B  = gravity parameter 

 = viscosity ratio 

 Gr  = Grashof number 

 = dimensionless particle-phase wall slip 
parameter 
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