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Abstract: The DTM-Padé method, a combination of the differential transform method (DTM) and Padé approximants, is 
applied to provide highly accurate, stable and fast semi-numerical solutions for several nonlinear flow regimes of interest 
in electrohydrodynamic ion drag pumps, arising in chemical engineering processing. In both regimes studied, the 

transformed, dimensionless ordinary differential equations subject to realistic boundary conditions are solved with DTM-
Padé and excellent correlation with numerical quadrature is achieved. The influence of electrical Reynolds number (ReE), 
electrical slip number (Esl), electrical source number (Es) and also electrical Hartmann number (Hae) are examined 

graphically. Applications of this study include novel ion drag pumps and astronautical micro-reactors. This study 
constitutes the first application of the DTM-Padé semi-computational algorithm to electrohydrodynamic biotechnology 
flows.Furthermore the range of solutions given significantly extends the existing computations in previous studies and 

provides a much more general analysis of ion drag pump electrohydrodynamics, of direct relevance to medical drug 
delivery systems. 
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1. INTRODUCTION 

In recent years considerable development has 

taken place in the study of electrofluid systems. 

Electrohydrodynamics (EHD) exploits the use of 

electrical fields to control transport phenomena in 

flowing fluids. Many biomedical and biotechnology 

applications of such flows exist including electrostatic 

precipitators [1], colloidal particle orientation with 

alternating or direct current electric field applied normal 

to an interface [2], dielectric pump design [3], co-planar 

microelectrode design [4], regulation of nickel particle 

granular hopper flows in medical (pharmaceutical) 

powder processing [5] and ion flow in divertor tokamak 

reactors [6]. Further recent applications of EHD flows 

which may exploit transverse or radial electrical fields 

include combustion control [7], smart electro-

rheological fluids [8], electro-spray liquid atomization 

using Taylor cone electrohydrodynamic jets [9], protein  
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biomolecule separation with pulsed electrofluid 

dynamics [10], EHD printing technology [11], 

astronautical vehicle surface modification with electro-

hydroynamic sprays [12] and boundary layer control in 

ionized hypersonic flows [13]. Numerical simulations of 

EHD flows have in particular been a major area of 

investigation, since the nature of mathematical models 

describing EHD is strongly nonlinear and coupled and 

necessitates numerical solutions. Bég et al. [14] 
studied the transport in EHD ion drag pumping 

using the computational network simulation method 

(NSM). Mastroberardino [15] analyzed nonlinear 

axisymmetric electrohydrodynamic using the homotopy 

analysis method (HAM). Chen et al. [16] studied EHD 

flow in a round pipe using a PISO (pressure-implicit 

with splitting of operators) numerical scheme under a 

periodic boundary condition, showing that a vortex ring 

is generated between the electrodes due to the 

nonuniform distribution of velocity and charge density 

during the starting process, and that spatial distribution 

of the pressure is similar to that of the electric potential 

between the electrodes. Fengt and Scott [17] examined 

numerically the axisymmetric steady flows driven by an 

electric field about a deformable fluid drop suspended 



DTM-Padé Numerical Simulation of Electrohydrodynamic Ion Drag Journal of Advanced Biotechnology and Bioengineering, 2013, Vol. 1, No. 2      63 

in an immiscible fluid with the leaky dielectric model 

and a Galerkin finite-element method with an elliptic 

mesh generation scheme. They showed that under 

conditions of creeping flow and vanishingly small drop 

deformations, the results of finite-element computations 

recover the asymptotic results. Vázquez et al. [18] used 

a particle-in-cell and the finite element-flux corrected 

transport method to simulate injection instabilities in the 

development of electro-convection between two 

parallel plates. They considered unipolar injection (both 

strong and weak injections) between two plane 

electrodes immersed in a dielectric liquid and showed 

that simulations are problematic for small oscillations of 

the velocity and electric current. Xuan and Zhang [19] 

used a least-squares meshfree method (LSMFM) 

based on the first-order velocity–pressure–vorticity 

formulation for the Stokes flow, electric potential–

electric field strength expression for electric field and 

temperature–heat flux equations for heat transfer to 

investigate computationally the two-dimensional 

electrothermally-induced fluid flow over microelec-

trodes. Verplaetsen and Berghmans [20] studied 

numerically the effect of electric field on the liquid-

vapor interface during film boiling from a horizontal 

surface of stagnant fluids (pool boiling) using a fourth-

order Runge-Kutta integration technique to calculate 

the shape of the interface and a boundary element 

method (BEM) to evaluate the electric field. Further 

studies of EHD transport have utilized the hybrid 

boundary element method - method of characteristics 

(BEM-MOC) approach [21], Lattice-Boltzmann method 

(LBM) [22], a ghost fluid method (GFM) with direct 

numerical simulation (DNS) [23], a finite difference 

method (FDM) [24] and the semi-numerical homotopy 

perturbation method (HPM) [25].  

Another powerful semi-numerical-analytic-technique 

which as been implemented in multi-physical fluid 

mechanics is the Differential Transform Method (DTM) 

introduced originally by Zhou [26] for electrical circuit 

theory analysis of linear and non-linear initial value 

problems. DTM formalizes the Taylor series in a totally 

different manner and differs from the customary higher 

order Taylor series method, the latter requiring 

symbolic computation a feature which unfortunately 

increases considerably the computational expense for 

large orders. DTM obtains a polynomial series solution 

by means of an iterative procedure. The DTM is 

therefore a robust, alternative procedure for obtaining 

analytic Taylor series solution of linear or nonlinear 

differential equations. With this method, it is possible to 

obtain highly accurate results or exact solutions for 

differential equations. DTM circumvents the need for 

linearization or perturbations and excessive 

computational work and round-off errors can be 

avoided. DTM implements specific transformation rules 

to transform original functions, including boundary 

conditions, into a set of algebraic functions. Solving the 

algebraic set by iteration, the results generated 

demonstrate very high accuracy. DTM has been 

employed in numerous diverse topics in fluid dynamics 

in recent years. These include hydromagnetic flows 

[27], mixed convection flows [28], magneto-micropolar 

flows [29], biomagnetic flows [30], swirling plasma 

flows [31], nuclear propulsion [32], non-Newtonian 

flows [33], combustion and fire dynamics [34], extra-

corporeal surgical magnetic field flow control [35], 

reactive flows [36], multi-phase biophysical transport 

[37] and hypersonic aerodynamics [38]. This diverse 

spectrum of successful applications has strongly 

verified the validity, effectiveness and flexibility of DTM, 

which has in many of these studies been combined 

with Padé approximants to satisfy infinity boundary 

conditions. DTM-Padé simulation has emerged as a 

powerful semi-numerical tool and the present article 

focuses on employing this approach to simulate 

electrohydrodynamic flows for the first time. We study 

in detail two nonlinear boundary value problems in 

electrohydrodynamic ion drag pump systems, and 

thereby re-examine earlier studies by McKee et al. [39] 

and Seyed-Yagoobi et al. [40]. Extensive details of 

DTM solutions are provided and benchmarked also 

with numerical shooting quadrature solutions. The high 

accuracy and potential of DTM in electrohydrodynamic 

flows is demonstrated. The current study finds 

important applications in medical electronics [41] and 

also cryogenic systems in bio-astronautics [42]. In the 

present study we extend the range of electrohydro-

dynamic parameters examined in previous studies to 

provide a more general analysis of ion drag transport in 

biotechnology. Electrical Reynolds number, electrical 

source number, electrical slip number and electrical 

Hartmann number are all addressed in much more 

detail than in previous investigations. This therefore 

allows bioengineers and biotechnologists a better 

perspective of potential operating abilities of EHD 

pumps in medical drug delivery.  

2. MATHEMATICAL MODELS  

Case 1: Electrohydrodynamic Ion Drag Flow in a 
Circular Cylindrical Conduit 

McKee et al. [39] originally studied this regime. It 
was later examined by Mastroberardino [15] using the 
homotopy analysis method (HAM) and alternative 
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solutions were given by Khan et al. [25] using the 
homotopy perturbation method (HPM), a special case 
of HAM. It has also been simulated very recently using 
a Chebyschev spectral collocation algorithm by Bég et 
al. [43]. Thusfar however it has not been analyzed with 
the DTM approach or any of its variants and is 
therefore an excellent test case for this method in 
electrohydrodynamic studies. Prior to developing DTM-
Padé semi-numerical solutions, we summarize the 
fundamentals of the problem. Consider an electrical 

field
   
E

0
, generated by a voltage V, across the length of 

a conduit (Figure 1), in a axisymmetric coordinate 
system (r,z) where r is radial coordinate and z is axial 
coordinate. Assuming only a single type of ionized 
particle is present in the dielectric fluid medium; the 

current density 
  
J is then influenced by the ion mobility 

(K) of the particles:  

J =
f
[KE

0
+ v]            (1) 

in which f denotes the free charge density of the 

ion/fluid medium. For fully developed flow, McKee et al. 
[39] reduce the generalized vectors for velocity, current 
density and free charge density to the following form: 

   
v = (0,0, w(r)),

   
j = (0,0, j(r)),

  f
= (r)         (2) 

with the axial pressure gradient, 
p

z
 assumed 

constant. It follows that the Navier-Stokes equations for 
the regime reduce to the following equation, in which 
the fluid velocity depends nonlinearly on the electrical 

field acting across it:  

p

z
=

f
E

0
+
μ

r

d

dr
r

dw

dr
          (3) 

where p  is pressure, μ is the dynamic viscosity of the 

dielectric fluid, Eo is electrical field (|E0|= V/L). Two 

different time scales exist, for a typical velocity scale, U 
and length, L, which control the coupling between the 
fluid and the ions, which take the forms: 

  

t
c
=

0

K
0

, t
f
=

L

U
          (4) 

The first of these times is the charge relaxation time 
for the ions (particles), tc, in which 0 is the constant 

permittivity of free space (Farads/m), 0 is the charge 

density at the inlet screen (emitter). The second time 
scale is the fluid transport time, tf. The electrical 
Reynolds number is obtained from the ratio of these 
two time scales, and embodies the ratio of inertial force 
to electrical force. It can be used to represent the 
efficiency of energy conversion in EHD ion drag 
pumps. Fluid convection determines the free charge 
density of the ion/fluid medium at high electrical 

Reynolds numbers ( f). Assuming that the current 

density is uniform over the cross-section at the pump 
conduit inlet, i.e. j (z=0) = j0, then the charge density 

from eqn. (1) becomes 

  
f
(r) =

j
0

KE
0
+ w(r)

. With these 

simplifications, we arrive at the following equation for 
the fully developed axial flow velocity, w(r), as originally 
derived by McKee et al. [39]: 

  

p

z
=

j
0
E

0

KE
0
+ w

+
μ

r

d

dr
r

dw

dr
         (5) 

The appropriate boundary conditions are specified 
by taking the velocity gradient and velocity as vanishing 
at the conduit centre and wall, respectively, viz:  

 

Figure 1: Case 1 - Physical model. 
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dw

dr
= 0 at r = 0; w = 0 at r = a          (6) 

w is bounded and symmetric about r = 0. Non-
dimensionalizing eqn. (5) using the transformed 

variables,
  
r* = r / a and 

  
w* = (w / KE

0
) , we obtain:  

  

d
2
w*

dr *
2
+

1

r *

dw*

dr *
+ Ha

2

e
1

w*

1 w*
= 0         (7) 

where 

  

=
K

j
0

p

z
1  measures the non-linearity in eqn. 

(8) and 

  

Ha
e
=

j
0
a

2

μK
2
E

0

 is the electric Hartmann 

number, signifying the ratio of electrical (Coulomb) to 
viscous forces in the regime. The dimensionless 
boundary conditions (7) become:  

  

dw*

dr *
= 0 at r* = 0; w* = 0 at r* = 1         (8) 

The EHD flow domain characterized by eqn. (8) has 

an electric Hartmann layer, which is analogous to the 

magnetic Hartmann layer and an electric Hartmann 

number Hae is invoked. At high Hae ions in the main 

flow regime will be subjected to weaker forces than 

those near the conduit wall. This electrical Hartmann 

layer will be diminished as electrical Hartmann number 

increases. Equation (7) under boundary conditions (8) 

constitute a well-posed nonlinear two-point boundary 

value problem which is solved using the DTM 

numerical approach, in due course.  

Case 2: Unipolar DC EHD Pump Flow  

In this second scenario, which has been considered 

in [40] was re-examined by Bég et al. [14] using a 

numerical tool known as the network simulation method 

(NSM) based on an electric circuit solver, PSPICE. 

This model has also been studied very recently by Bég 

et al. [43] with the Chebyschev spectral collocation 

computational technique. The flow model however 

deviates considerably from that in Case 1. The 

geometry of the problem is depicted in Figure 2. In this 

case, we neglect electro-strictive forces and assume, 

following [40], that electrical field distribution is uni-

directional and parallel to the flow direction with 

unipolar ions present in the fluid and constant mobility. 

The emitter and collector electrodes exert no effect on 

the fluid flow. Ion current and field distributions are also 

not influenced by surface charges on the insulating 

boundaries of the conduit. Ion velocity relative to fluid 

velocity is of the same order of magnitude as the fluid 

velocity to the electrodes. High ion density therefore 

exists in the medium, and this regime is very relevant 

to astronautical applications [42]. The conservation 

laws for electrical field, current density and electrical 

potential take the form:  

Gauss’s Law: 

  
E =            (9) 

Conservation of Charge: 

   

J +
t
= 0          (10) 

 

Figure 2: Case 2: Physical model. 
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Conservation of Electric Potential: 

  E =          (11) 

When all three mechanisms of the current flow are 
combined we obtain the following relation for total 
current density: 

J = E + u + μE         (12) 

where  is the gradient operator,
  
E  is electrical field 

vector (V/m
2
), J  is the current density vector 

(Amps/m
2
),  is charge density (Coulomb/m

3
), t is time, 

 is permittivity (Faradays/m),  is potential (V),  is 

electrical conductivity (S/m),   u  is fluid bulk velocity 

vector (m/s) and μ is ion mobility (m
2
/Vs). Herein we 

shall study the situation where the electrical field 
located at emitter (i.e. at z = 0 in Figure 2), is zero. This 
is known as the maximum pressure scenario and has 
also been considered recently by Bég et al. [24]. In this 
study we further extend the computations presented in 

[24]. In equation (12), 
  E  is the electrical conduction 

term, u  is the electrical convection term and 
  
μE  is 

the ionic mobility term. The conservation equations (1) 
to (4) can be shown to reduce for constant property 
electrohydrodynamic flow to the following group of 
coupled, nonlinear, ordinary differential equations, in 
which z i.e. axial coordinate along the axis of the dc 
pump, is the only independent variable: 

(μE + u)
d

dz
+ +

μ 2
= 0        (13) 

dE

dz
= 0          (14) 

E +
d

dz
= 0          (15) 

The relevant boundary conditions are: 

  
z = 0(emitter) : E = 0; =

o
; =V

o
      (16) 

Another important case, namely the Operating 
Condition Scenario can also be studied wherein 

electrical potential ( *) at the collector (z= L) is instead 

specified, rather than at the emitter. Normalization of 
the eqns. (13) to (15) is achieved with the following 
dimensionless variables [24]:  

  

E* = E
L

V
o

,  

  

* =

o

, 

  

* =
V

0

, 
  

z* =
z

L
,  

Re
E
=

u

L
,
  

E
sl
=

μV
0

L

u
, 

  

E
s
=

0
L

2

V
0

      (17) 

The non-dimensional conservation equations for 

electrical field (E*), potential ( *), and charge density 

( *), thereby reduce to: 

  

(1+ E
sl

E*)
d *

dz *
+

*

Re
E

+ E
s
E

sl
*2

= 0       (18) 

  

dE *

dz *
E

s
* = 0          (19) 

  

E *+
d *

dz *
= 0           (20) 

The corresponding transformed boundary 
conditions are: 

  
At z* = 0(emitter) : E* = 0; * = 1; * = 1       (21) 

In the eqns. (18) to (20), ReE is the electrical 

Reynolds number (symbolizing the relative significance 

of the charge convection effect and defined as the ratio 

of the timescales of charge convection by flow to that 

for charge relaxation by ohmic conduction), Esl is the 

electrical slip number (which provides an estimate of 

the relative motion of the injected charges with regard 

to the bulk fluid velocity, u) and Es is electrical source 

number (based on the analogy between the Fourier 

thermal conduction equation and Poisson’s 

electrostatics equation). For engineering applications, it 

is pertinent to study the pressure generation ( P) and 

power efficiency ( EHD). These are defined respectively, 

ignoring shear stresses along the conduit walls, as 

follows [24]:  

P =
1

2
E

L

2          (22) 

EHD
=

power output

power input
=

(uA) P

[V
0

V
L
]I

       (23) 

where P denotes pressure generation of the pump 

(N/m
2
), EL is the electrical field at the collector 

electrode (V/m), E0 is the electrical field at the emitter 

electrode, A is the cross-sectional area of the unipolar 

dc EHD pump (m
2
), V0 is the voltage applied to the 

emitter electrode (V), VL is the voltage applied to the 

collector electrode (V), I is current (Amps), L is distance 

between the electrode pair (m). As the electrical field 

becomes zero at the emitter electrode, the electrical 

current is therefore:  

  
I = JA =

0
uA          (24) 
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where 
0
 is the charge density at the emitter electrode 

(Colulomb/m
3
). It follows that the EHD efficiency is: 

  

=

1

2
E

L

2

[V
0

V
L

]
0

         (25) 

In dimensionless form we have:  

=

1

2
E *

L

2

Es[1 *
L
]

         (26) 

where E*L is the dimensionless electrical field at the 

collector electrode and 
  

*
L

 is the dimensionless 

potential at the collector electrode. The expression (26) 

associates EHD, directly with the electrical field values 

at the emitter and the collector electrodes. The coupled 
boundary value problem defined by eqns. (18) to (20) 
under conditions (21) is also solved subsequently by 
the DTM approach.  

3. DIFFERENTIAL TRANSFORM METHOD (DTM) 

DTM has a number of complex aspects associated 

with it. Here we present a summary of the pertinent 

steps involved in using this technique and then 

elaborate on the implementation of Padé approximants 

which accelerate convergence of the procedure. 

Further details of DTM-Padé simulation are available in 

Bég et al. [44] wherein it has been applied to 

micropolar non-Newtonian flows. The transformation of 

the k
th

 derivative of a function in one variable is as 

follows: 

U (k) =
1

k !

d
k
u(k)

dx
k

z*= z*0

,
       (27) 

In Eq. (27) 
  
f (z*)  is the original function and 

  
F(k)  

is transformed function, termed the T-function (it is also 

called the spectrum of 
  
f (z*)  at 

  
z* = z *

0
 in the  K  

domain). The differential inverse transformation of 

  
F(k)  is defined as follows: 

f (z*) = F(k)(z * z *
0
)k .

k=0
       (28) 

Eq. (28) implies that the concept of the differential 

transform is derived from Taylor’s series expansion; 

however this method does not evaluate the derivatives 

symbolically. Nevertheless relative derivatives are 

calculated by an iterative procedure that is described 

by the transformed equations of the original functions. 

In real applications, the function f (z*)  in Eq. (28) is 

expressed by a finite series and can be written as: 

Table 1: The Fundamental Operations of DTM 

Original function Transformed function 

  
w(x) = u(x) ± v(x)  

  
W (k) = U (k) ±V (k)  

  
w(x) = u(x)  

  
W (k) = U (k), isa constant  

  
w(x) = x

r  

  

W (k)= (k 1),where (k 1)=
1, if k = r

0, if k r

 

  
w(x) =

du(x)

dx
 W (k)= (k +1)U (k + r)  

  
w(x) =

d
r
u(x)

dx
r

 W (k)= (k +1)(k +2)...(k + r)U (k + r)  

  
w(x) = u(x)v(x)  

  
W (k) = U (r)V (k r)

r=0

k

 

w(x) =
du(x)

dx

dv(x)

dx
 

  
W (k)= (r +1)(k r +1)U (r +1)V (k r +1)

r=0

k

 

  
w(x) = u(x)

dv(x)

dx
 

  
W (k)= (k r +1)U (r)V (k r +1)

r=0

k

 

  
w(x) = u(x)

d v(x)

dx

dz(x)

dx
 

W (k) = (t +1)(k r t +1)
t=0

k r

r=0

k

U (r)V (t +1)Z(k r t +1)
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f (z*) F(i)(z * z *
0
)i

i=0

N

,
       (29) 

Eq. (29) implies that 
  

F (i)
i=N +1

(z * z *
0
)

i  is 

negligibly small, where  N  is series size. The 
fundamental mathematical operations performed by 
DTM are listed in Table 1. For brevity we have only 
documented the DTM procedure for Case 2 here, as a 
guide to researchers interested in learning this 
approach. Case 1 is considerably simpler than Case 2 
in that only a single differential equation (7) under 
boundary conditions (8) requires solution, and therefore 
details for Case 1 are omitted. Taking the differential 
transform of Eqs. (18-20), we obtain: 

(k +1) *(k +1) = E
sl

(k l +1)E*(l) *(k l +1)
*(k)

Re
El=0

k

E
sl
E

s

*(l) *(k l)
l=0

k

,

  
(30) 

  
(k +1)E

*(k +1) = E
s

*(k),        (31) 

(k +1) *(k +1) = E
*(k).         (32) 

The transform of the boundary conditions are 

  

*
[0] = 1,

E
*
[0] = 0,

*
[0] = 1.

         (33) 

Therefore the DTM solutions of equations (18-20) 
i.e. Case 2 - EHD ion drag flow, are: 

  

* (z*) 1+1.5z * 0.517688z *2
+0.297563z *3 0.095961z *4

+0.0132474z *5

+0.000654025z *6
+0.000382938z *7 0.00058118z *8

+0.000137088z *9

+0.000031461z *10 0.0000234089z *11
+3.09702 10 6

z *12
+1.53068 10 6

z *13

8.28148 10 7
z *14

+1.38651 10 7
z *15

+3.38783 10 8
z *16 2.86723 10 8

z *17

+8.22247 10 9
z *18 2.51079 10 10

z *19 8.40387 10 10
z *20 ,

           (34) 

E
* (z*) 1 2.07075z *+1.78538z *2 0.767688z *3

+0.132474z *4
+0.0078483z *5

+0.00536113z *6 0.00929889z *7 0.0024759z *8
+0.000629219z *9

0.000514997z *10 0.0000743286z *11
+0.0000397976z *12 0.0000231881z *13

+4.15954 10 6
z *14

+1.08411 10 6
z *15 9.74858 10 7

z *16
+2.96009 10 7

z *17

9.54101 10 9
z *18 3.36155 10 8

z *19
+1.66672 10 8

z *20 ,

           (35) 

  

* (z*) 1 2.07075z *+1.78538z *2 0.767688z *3
+0.132474z *4

+0.0078483z *5

+0.00536113z *6 0.00929889z *7 0.0024759z *8
+0.000629219z *9

0.000514997z *10 0.0000743286z *11
+0.0000397976z *12 0.0000231881z *13

+4.15954 10 6
z *14

+1.08411 10 6
z *15 9.74858 10 7

z *16
+2.96009 10 7

z *17

9.54101 10 9
z *18 3.36155 10 8

z *19
+1.66672 10 8

z *20 ,

           (36) 

The equations (34-36) have sufficient accuracy, but 

these series diverge around infinity. As such without 

using Padé approximants, the analytical solution 

obtained by DTM, cannot satisfy infinity boundary 

conditions. It is therefore essential to combine the 

series solution obtained by DTM with Padé 

approximants to provide an effective tool to handle 

boundary value problems on infinite domains. 

4. PADÉ APPROXIMANTS 

Some techniques exist to increase the convergence 
of a given series. Among them, the so-called Padé 
technique is widely applied. Suppose that a function 

  
f (z*)  is represented by a power series 

  
c

ii=0
z *

i

,
 
so 

that: 

  

f (z*) = c
i
z *i .

i=0

        (37) 

This expansion is the fundamental starting point of 
any analysis using Padé approximants. The notation 

   
c

i
, i = 0, 1, 2,  is reserved for the given set of 

coefficients and 
  
f (z*)  is the associated function. 

  
[L, M ]  Padé approximant is a rational fraction given 

by:  

   

a
0
+ a

1
z *+ + a

L
z *

L

b
0
+ b

1
z *+ + b

M
z *

M
,         (38) 

which has a Maclaurin expansion which agrees with 
(37) as far as possible. Notice that in (38) there are 

  L +1 numerator coefficients and   M +1  denominator 
coefficients. As a result, there are   L +1  independent 
numerator coefficients and M independent denominator 
coefficients, making L + M +1 unknown coefficients in 

all. This number suggests that normally 
  
[L, M ] ought to 

fit the power series (37) through the orders 

   
1, z*, z *

2
, , z *

L+ M
. In the notation of formal power 

series: 

   

c
i
z *

i

i=0

=
a

0
+ a

1
z *+ + a

L
z *

L

b
0
+ b

1
z *+ + b

M
z *

M
+ O z *

L+ M +1( ),      (39) 

Baker and Graves-Morris show [45] have identified 

that: 

   

b
0
+ b

1
z *+ + b

M
z *M( )(c0

+ c
1
z *+ ) =

a
0
+ a

1
z *+ + a

L
z *L

+Oz * L+ M +1( )
      (40) 

Equating the coefficients of 
   

L+1
,

L+2
, ,

L+ M  

   

b
M

c
L M +1

+ b
M 1

c
L M +2

+ + b
0
c

L+1
= 0,

b
M

c
L M +2

+ b
M 1

c
L M +3

+ + b
0
c

L+2
= 0,

b
M

c
L
+ b

M 1
c

L+1
+ + b

0
c

L+ M
= 0,

      (41) 
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If 
   i 0, we define 

  
c

i
= 0  for consistency. Since 

  
b

0
= 1, Eq. (41) becomes a set of M  linear equations 

for the  M  unknown denominator coefficients: 

c
L M +1

c
L M +2

c
L M +3

c
L

c
L M +2

c
L M +3

c
L M +4

c
L+1

c
L M +3

c
L M +4

c
L M +5

c
L+2

c
L

c
L+1

c
L+2

c
L+M 1

b
M

b
M 1

b
M 2

b
1

=

c
L+1

c
L+2

c
L+3

c
L+M

,      (42) 

From these equations, b values may be found. The 

numerator coefficients, 
   
a

0
,a

1
, ,a

L
, follow immediately 

from (40) by equating the coefficients of 

   
1, z*, z *

2
, , z *

L+ M

:
 

   

a
0
= c

0
,

a
1
= c

1
+ b

1
c

0
,

a
2
= c

2
+ b

1
c

1
+ b

2
c

0
,

a
L
= c

L
+ b

i
c

L i
.

i=1

min{L, M }

        (43) 

Thus (42) and (43) normally determine the Padé 
numerator and denominator and are called the Padé 

equations. The 
  
[L, M ]  Padé approximant is 

constructed which agrees with 
  

c
ii=0
z *

i

, through order 

  z *
L+ M . The order of Padé approximants 

  
[L, M ] , [6, 6] 

has sufficient accuracy; on the other hand, if the order 
of the Padé approximation increases, the accuracy of 
the solution increases. Further extensive details of 
Padé approximants are provided in Baker and Graves-
Morris [45], Baker [46], Rashidi [47] and Bég [48]. In 
light of the above details, the [6, 6] Padé approximants 
for Case 2 i.e. eqns. (34) and (35), and the [5, 5] Padé 

approximants of (36) are as follows: 

  

* (z*)
[6,6]

= (1+ 2.22184z *+0.910821z *2
+0.538894z *3

+0.103521z *4

+0.027358z *5
+0.00179448z *6

+0.000367531z *7

0.00009861z *8 0.000071155z *9
+0.0000164646z *10 ) / (1

+0.721841z *+0.345747z *2
+0.0963992z *3

+0.0190791z *4

+0.00178378z *5 0.000316272z *6 0.0000965818z *7

0.0000158136z *8
+2.08519 10 6

z *9
+1.04034 10 6

z *10 ),

           (44) 

  

E
* (z*)

[6,6]
= (1 0.97484z *+0.314109z *2 0.0641004z *3

+0.0501699z *4

0.0285218z *5
+0.00705916z *6 0.000778593z *7

+0.000102791z *8 0.0000347496z *9
+4.52094 10 6

z *10 ) / (1

+1.09607z *+0.798418z *2
+0.400019z *3

+0.161998z *4

+0.0526388z *5
+0.0141896z *6

+0.00315306z *7

+0.00055245z *8
+0.0000743182z *9

+6.16186 10 6
z *10 ).

           (45) 

* (z*)
[5,5]

= (1 0.97484z *+0.314109z *2 0.0641004z *3
+0.0501699z *4

0.0285218z *5
+0.00705916z *6 0.000778593z *7

+0.000102791z *8 0.0000347496z *9
+4.52094 10 6

z *10 ) / (1

+1.09607z *+0.798418z *2
+0.400019z *3

+0.161998z *4

+0.0526388z *5
+0.0141896z *6

+0.00315306z *7

+0.00055245z *8
+0.0000743182z *9

+6.16186 10 6
z *10 ).

           (46) 

For both Cases 1 and 2, numerical shooting 
quadrature solutions have also been obtained to further 
validate the DTM-Padé solutions. These employ 4

th
 

order Runge-Kutta integration schemes and further 
details are given in Rashidi [47] and Bég [48]. 

5. COMPUTATIONS AND DISCUSSION 

Detailed solutions generated by the DTM-Padé 
simulation are presented. We consider Case 1 first and 

then discuss solutions obtained for Case 2.  

Case 1: Electrohydrodynamic Ion Drag Flow in a 
Circular Cylindrical Conduit 

The influence of electrical Hartmann number (Hae
2
) 

and non-linearity parameter ( ) on the axial velocity 

(W*) evolution with radial coordinate (r*) are depicted in 
Figures 3 to 14. In these plots the DTM-Padé solutions 
correspond to solid lines and we have compared our 
computations with numerical shooting quadrature 
method. In all cases the correlation is excellent. It is 

apparent from Figures 3 to 8 that as  is increased, 

there is a strong decrease in axial velocity at the inlet 
(r* = 0). As square of electrical Hartmann number 
increases from Figure 3 (Ha

2
e = 0.5), through Figure 4 

(Ha
2
e = 2), Figure 5 (Ha

2
e = 4), Figure 6 (Ha

2
e = 6), 

Figure 7 (Ha
2

e = 8) and Figure 8 (Ha
2
e = 10), 

magnitudes of the axial velocity are markedly elevated. 
With higher Ha

2
e values, velocity profiles are also 

progressively flattened towards the start of of the 

conduit i.e. r* = 0. Ha
e
=

j
0
a

2

μK
2
E

0

 and embodies the 

relative effect of the in the electrical Coulomb force and 
the viscous force in the regime. Greater electrical 
Hartmann number will induce a decrease in viscous 
force and an elevation in electrical force. Hae is also 
directly proportional to current density (uniform over the 
cross-section at the pump conduit inlet). Greater 
acceleration of the flow is caused with higher electrical 
Coulomb force. In all cases the fluid velocity vanishes 
at the end (exit point) of the conduit, in accordance with 

the boundary condition specified there (W* 0 as r* 

1). 9 to 14, where a strong escalation in axial velocity 

accompanies a rise in electrical Hartmann number. An 

increase in non-linearity parameter ( ) is again 

observed to depress velocities. These trends are 
further observed in Figures 9 to 14. Furthermore the 
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DTM-Padé solutions computed in Figures 3-14 show 
excellent agreement with the perturbation computations 
of McKee et al. [39] and the homotopy computations of 
Mastroberardino [15]. Excellent confidence in the 
present solutions is further demonstrated with the 
numerical quadrature comparisons in all Figures 3-14. 
Confidence in the present computations is therefore 
high.  

 

Figure 3: Axial flow velocity variation with various  for 

  
Ha

e

2
= 0.5 .  

 

 

Figure 4: Axial flow velocity variation with various  for 

  
Ha

e

2
= 2 . 

Case 2: Unipolar DC EHD Pump Flow 

In this second test problem, for which details of the 
DTM-Padé procedure were given, we examine the 
effects of three electrohydrodynamic control 
parameters: electrical slip number (Esl), electrical 
source number (Es) and electrical Reynolds number  
 

 

Figure 5: Axial flow velocity variation with various  for 

  
Ha

e

2
= 4 . 

 

 

Figure 6: Axial flow velocity variation with various  for 

  
Ha

e

2
= 6 . 

 

 

Figure 7: Axial flow velocity variation with various  for 

  
Ha

e

2
= 8 . 
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Figure 8: Axial flow velocity variation with various  for 

  
Ha

e

2
= 10 . 

 

 

Figure 9: Axial flow velocity variation with various 
  
Ha

e

2  for 

 = 0.25 .  

 

 

Figure 10: Axial flow velocity variation with various Ha
e

2  

for
 = 0.5 . 

 

Figure 11: Axial flow velocity variation with various 
  
Ha

e

2  for
 

 = 0.75 . 

 

 

Figure 12: Axial flow velocity variation with various 
  
Ha

e

2  

for
 = 1 . 

 

 

Figure 13: Axial flow velocity variation with various 
  
Ha

e

2  for
 

 = 1.5 .  
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Figure 14: Axial flow velocity variation with various 
  
Ha

e

2  for 

 = 2 . 

 

(Ree) on the electrical field 
  
(E

* ) , potential 
 
( * ) , and 

charge density ( * )  distributions. To validate the 

present DTM-Padé solutions, we have compared our 
computations with several numerical solutions obtained 
with the 4

th
 order shooting quadrature method. 

Additionally we have shown DTM computations in the 
absence of Padé approximants. Inspection of Figures 
15 to 18 and Table 2 to 4 shows that generally 
excellent correlation is achieved between DTM-Padé 
and numerical quadrature. However the deviation of 
solutions corresponding to the classical DTM approach 
is clearly evident. The necessity for incorporating Padé 
approximants is therefore clearly demonstrated. The 
DTM solutions for dimensionless charge density 
(Figure 15) diverge from the correct numerical solution 

at an intermediate distance along the conduit length, z* 
~ 0.44. The DTM-Padé solutions exactly replicate the 
numerical quadrature solution throughout the conduit 
length i.e. there is never any deviation in solutions 
when Padé approximants are utilized. Divergence in 
DTM solutions for electrical field (Figure 16) and 
dimensionless potential (Figure 17) also arise in the 
intermediate region of the conduit length but 
progressively further along. Figure 18 demonstrates 
that the relative error between the DTM-Padé and 
numerical shooting solutions is almost 
indistinguishable. Further we note that the [L, M] Padé 
approximants in Tables 2-4 and Figures 15-18, were 
selected as [3, 3], [4, 4] and [5, 5], [6, 6] for the flow 
variables, as expressed in eqns. (44) to (46).  

 

Figure 16: Dimensionless electrical field 
  
(E

*)  obtained by 

DTM, DTM–Padé and numerical shooting quadrature with 

  
E

s
= 1, E

sl
= 1, R e

e
= 350 . 

 

 

Figure 17: Dimensionless potential
 
( * )  obtained by DTM, 

DTM–Padé and numerical shooting quadrature with 

E
s
= 1, E

sl
= 1, R e

e
= 350 . 

 

Figure 15: Dimensionless charge density 
 
( * )  obtained by 

DTM, DTM–Padé and numerical shooting quadrature with 

  
E

s
= 1, E

sl
= 1, R e

e
= 350 .  
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Figure 18: The error between DTM–Padé and numerical 

shooting quadrature for electrical field 
  
(E

*) , potential 
 
( * ) , 

and charge density 
 
( * )  

with E
s
= 1, E

sl
= 1, R e

e
= 350 . 

Figures 19 to 21 show that the charge density *  

and potential *  are strongly decreased whereas 

electrical field   E
*

 is increased with an increase in the 

values of 
 
E

s
. Charge density profiles (Figure 19) are 

seen to be maximized at the conduit inlet and 
minimized at the outlet. The opposite is observed for 
the electrical field in Figure 20. Figure 21 further 
reveals that electrical potential vanishes at the conduit 
outlet for Es values of 0.5, 1 and 3; however with higher 
Es values, the electrical potential is found to vanish 
systematically closer to the inlet. For example, for Es = 

10, *  0 at Z* ~ 0.85, for Es= 25 at Z * ~ 0.625 and for 

Es = 50 at Z* ~ 0.5. This has not been observed in 
previous studies e.g. Bég et al. [14] and Seyed-
Yagoobi et al. [40], since these other numerical 
investigations did not consider sufficiently high values 
of the electrical source number. Es is based on the 
analogy between thermal conduction (Fourier’s 
equation) and electrostatics (Poisson’s equation). The 
ratio of heat source (W/m

3
) to thermal conductivity 

Table 2: ( * )  Obtained by DTM–Padé and Numerical Quadrature for 
  
E

s
= 1, E

sl
= 1, R e

e
= 350  

Numerical DTM–Padé 

[6,6] 

DTM–Padé 

[5,5] 

DTM–Padé 

[4,4] 

DTM–Padé 

 
  Z *  

1. 1. 1. 1. 1. 0. 

0.912633 0.912633 0.912633 0.912633 0.912633 0.1 

0.844744 0.844744 0.844744 0.844744 0.844744 0.2 

0.79003 0.790029 0.790029 0.790029 0.790031 0.3 

0.744713 0.744713 0.744713 0.744713 0.745361 0.4 

0.706381 0.706381 0.706381 0.706381 0.769633 0.5 

0.673405 0.673405 0.673405 0.673405 3.32158 0.6 

0.644643 0.644643 0.644643 0.644644 62.5066 0.7 

0.619269 0.619269 0.619269 0.619272 944.284 0.8 

0.596665 0.596665 0.596666 0.59667 10402.6 0.9 

0.576363 0.576363 0.576363 0.576371 88778.3 1 

 

Table 3: 
  
(E

*) Obtained by DTM–Padé and Numerical Quadrature for 
  
E

s
= 1, E

sl
= 1, Re

e
= 350  

Numerical DTM–Padé 

[6,6] 

DTM–Padé 

[5,5] 

DTM–Padé 

[4,4] 

DTM–Padé 

 
  Z *  

0 0. 0. 0. 0. 0. 

0.0954325 0.0954325 0.0954325 0.0954325 0.0954325 0.1 

0.18317 0.18317 0.18317 0.18317 0.18317 0.2 

0.264818 0.264818 0.264818 0.264818 0.264818 0.3 

0.341488 0.341488 0.341488 0.341488 0.341472 0.4 

0.413992 0.413992 0.413992 0.413992 0.412414 0.5 

0.482942 0.482942 0.482942 0.482941 0.416711 0.6 

0.548814 0.548814 0.548813 0.54881 -1.00133 0.7 

0.611984 0.611984 0.611983 0.611977 -23.073 0.8 

0.67276 0.672759 0.672759 0.672746 -260.773 0.9 

0.731393 0.731393 0.731392 0.731369 -2233.35 1 
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(W/mK) i.e. q’/k in Fourier’s law is analogous to the 
ratio of space charge density to electrical permittivity 

( / ) in Poisson’s equation. The electrical source 

parameter therefore exerts a significant effect on all 
variables in EHD ion drag flow. The numerical 
quadrature solutions again show excellent correlation 
with the DTM-Padé computations in Figures 19 to 21.  

 

Figure 19: Charge density 
 
( * )  versus axial coordinate 

  
(Z

*) for various 
 
E

s
 with

  
Re

e
= 350, E

sl
= 5 . 

Figures 22 to 24 illustrate the influence of the 

electrical Reynolds number, Re, on charge density
 

* , 

electrical field   E
*  and potential * . Re symbolizes the 

relative influence of charge convection effect and is the 
ratio of the timescales of charge convection by flow to 
that for charge relaxation by ohmic conduction. 
Evidently, increasing electrical Reynolds number from 

1 to 30 results in a major escalation in charge density. 
However for subsequent enhancement in electrical 
Reynolds number, there is no tangible change in 
charge density (Figure 22). This implies that there is a 
critical limit to the charge density which can be 
generated in ion drag flow in the system, and a finite 
limit to the influence of the charge convection effect as 
simulated in electrical Reynolds number. Figure 23 
indicates that an increase in electrical Reynolds 
number also enhances the electrical field in the 
conduit. For Re = 1 the profile is a monotonic growth; 
however for Re values greater than 30 and up to 600), 
the profile evolves into a linear growth. There is no 
noticeable variation in electrical field between Re = 30 
and Re = 600, again indicating that the charge 
convection effect has a limit and cannot generate 

Table 4: ( * ) Obtained by DTM–Padé and Numerical Quadrature for 
  
E

s
= 1, E

sl
= 1, R e

e
= 350  

Numerical DTM–Padé 

[5,5] 

DTM–Padé 

[4,4] 

DTM–Padé 

[3,3] 

DTM–Padé 

 
  Z *  

{1.} 1. 1. 1. 1. 0. 

{0.995156} 0.995156 0.995156 0.995156 0.995156 0.1 

{0.981169} 0.981169 0.981169 0.981169 0.981169 0.2 

{0.958724} 0.958724 0.958724 0.958723 0.958724 0.3 

{0.928371} 0.928371 0.928371 0.928366 0.928371 0.4 

{0.890565} 0.890565 0.890565 0.890548 0.890524 0.5 

{0.845691} 0.845691 0.845689 0.845641 0.843948 0.6 

{0.794079} 0.794079 0.794075 0.793962 0.753212 0.7 

{0.736018} 0.736018 0.736007 0.735774 0.110524 0.8 

{0.671762} 0.671761 0.671739 0.671304 -6.24303 0.9 

{0.601538} 0.601535 0.601492 0.600739 -58.5633 1 

 

Figure 20: Electrical field 
  
(E

*)  versus axial coordinate 

  
(Z

*) for various 
 
E

s
 with

  
R e

e
= 350, E

sl
= 5 . 
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electrical field increase beyond a critical point. 
Electrical potential is found to conversely decrease with 
increasing electrical Reynolds number, as seen in 
Figure 24. As indicated earlier, however there is no 
significant further decrease beyond electrical Reynolds 
number of 30. For all cases in Figure 24, the profiles 
exhibit a monotonic decay. Even at very high electrical 
Reynolds numbers, the charge density is found to 
vanish at the end of the conduit, as is apparent at the 
lowest electrical Reynolds number.  

 

Figure 22: Charge density 
 
( * )  versus axial coordinate 

  
(Z

*) for various 
 
R e  with

  
E

s
= E

sl
= 0.75 . 

Figures 25 to 27 illustrate the influence of the 

electrical slip number,
 
E

sl
 on charge density

 

* , 

electrical field   E
*  and potential * . The electrical slip 

number quantifies the relative motion of the injected 

charges with regard to the bulk fluid velocity (u). Esl = 0 
relates to the scenario wherein there is no zero 
contribution of the mobility component to the current 
density, as indicated earlier by Bég et al. [14]. A distinct 
decrease in charge density is induced with an increase 
in electrical slip number, as seen in Figure 25. Profiles 
also increasingly evolve from approximately linear 
decay for Esl = 0.7 to a very strong monotonic decay for 
Esl = 20. Similar trends were observed by Seyed-
Yagoobi et al. [40] although they did not consider 
electrical slip number values beyond 5. In Figure 26, 
electrical field is also found to be strongly decreased 
with a rise in electrical slip numbers. The profiles 
evolve from a strong linear growth for Esl = 0.7 to a 
strong monotonic growth for Esl = 20. A very different 
response to increasing electrical slip number is 

 

Figure 21: Potential ( * )  versus axial coordinate (Z*) for 

various E
s

 with R e
e
= 350, E

sl
= 5 .  

 

Figure 23: Electrical field 
  
(E

*)  versus axial coordinate 

  
(Z

*) for various 
 
R e  with E

s
= E

sl
= 0.75 . 

 

 

Figure 24: Electrical potential 
 
( * )  versus axial coordinate 

  
(Z

*) for various 
 
R e  with

  
E

s
= E

sl
= 0.75 . 
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observed in Figure 27 where electrical potential is seen 
to be considerably elevated with an increase in Esl from 
0.7 through 1, 2, 10 to 20. Figures 25-27 all correspond 
to very high electrical Reynolds number (400) and 
again exhibit excellent correlation between the DTM-
Padé semi-numerical and the 4

th
 order Runge-Kutta 

numerical quadrature solutions. Stable, convergent 
solutions are clearly achieved testifying to the excellent 
ability and accuracy of the DTM-Padé semi-numerical 
simulation.  

 

Figure 25: Charge density 
 
( * )  versus axial coordinate 

  
(Z

*) for various 
 
E

sl
 with

  
R e

e
= 400, E

s
= 0.6 . 

 

 

Figure 26: Electrical field 
  
(E

*)  versus axial coordinate 

(Z*) for various 
 
E

sl
 with

  
R e

e
= 400, E

s
= 0.6 . 

Finally Figures 28 to 30 illustrate the evolution of ion 

drag pump power efficiency, 
EHD

 with variation in 

Re
e
, E

s  
and 

sl
E . 

  

=

1

2
E *

L

2

Es[1 *
L

]
 and, as elaborated 

earlier, this definition for efficiency shows clearly the 
relationship with electrical field values at the emitter 
and the collector electrodes. The effect of electrical 
Reynolds number is found to be small (Figure 28). 
Peak efficiency is reached very quickly as electrical 
Reynolds number increases. There is a much more 
prominent influence however observed on efficiency by 
the electrical slip number. For Esl = 100, efficiency 
peaks at about 13%; however this is hugely boosted 
with decreasing electrical slip numbers and for Esl = 1, 
the maximum efficiency attained is 33%. Therefore by 
altering the electrical slip number the ion drag EHD 

 

Figure 28: Distribution of 
 ehd

 versus 
 
R e

e
 for 

 
E

s
 = 10 and 

for various 
 
E

sl
values. 

 

Figure 27: Potential 
 
( * )  versus axial coordinate 

  
(Z

*) for 

various 
 
E

sl
 with

  
R e

e
= 400, E

s
= 0.6 . 
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pump efficiency can be massively increased. Figure 29 
shows that a very slight increase in pump efficiency is 
caused by an increase in electrical Reynolds numbers 
from 1 to 600. However a very strong decrease in 
efficiency is observed with an increase in the electrical 
slip number, confirming the trends observed in Figure 
28. Figure 30 further shows that increasing electrical 
Reynolds number induces a minor enhancement in 
efficiency whereas a significant decrease in efficiency 
is induced with increasing electrical source numbers. 
Peak efficiency is therefore computed for both very low 
electrical slip and electrical source numbers.  

 

Figure 29: Distribution of 
ehd

 versus E
sl

 for E
s

 = 10 and 

for various 
 
R e

e
values. 

 

 

Figure 30: Distribution of 
 ehd

 versus 
 
E

s
 for 

 
E

sl
 = 3 and for 

various 
 
R e

e
values. 

6. CONCLUSIONS 

A detailed semi-numerical study has been 

conducted of several electrohydrodynamic flows of 

relevance to ion drag pump systems using the 

differential transform method (DTM) and also the 

combined DTM-Padé simulation. For both test 

problems examined excellent correlation has been 

achieved between numerical quadrature solutions (4
th

 

order Runge Kutta method) and DTM-Padé solutions. 

However significant divergence of solutions has been 

identified with DTM. Extensive details of the selection 

of Padé approximants necessary for sustaining 

converged solutions are also documented. An error 

analysis has also been conducted. The results have 

generally confirmed, but also extended the range of 

electrohydrodynamic parameters considered in 

previous numerical studies. Key parameters influencing 

the optimization of EHD pump efficiency and also flow 

acceleration have been identified. The current study 

shows that DTM-Padé simulation holds excellent 

promise in simulating nonlinear electrohydrodynamic 

problems and also provides researchers with an 

alternative technique with which they can benchmark 

solutions generated by more conventional numerical 

methods such as finite element and network simulation 

methods, and also purely analytical methods such as 

the homotopy analysis method. Future studies will 

examine electro-rheological flows and also employ 

DTM-Padé simulation in thin film electrohydrodynamics 

[49]. 
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